4 resultados para Local anti-infective agents
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Alzheimer's disease (AD) and cancer represent two of the main causes of death worldwide. They are complex multifactorial diseases and several biochemical targets have been recognized to play a fundamental role in their development. Basing on their complex nature, a promising therapeutical approach could be represented by the so-called "Multi-Target-Directed Ligand" approach. This new strategy is based on the assumption that a single molecule could hit several targets responsible for the onset and/or progression of the pathology. In particular in AD, most currently prescribed drugs aim to increase the level of acetylcholine in the brain by inhibiting the enzyme acetylcholinesterase (AChE). However, clinical experience shows that AChE inhibition is a palliative treatment, and the simple modulation of a single target does not address AD aetiology. Research into newer and more potent anti-AD agents is thus focused on compounds whose properties go beyond AChE inhibition (such as inhibition of the enzyme β-secretase and inhibition of the aggregation of beta-amyloid). Therefore, the MTDL strategy seems a more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling its multifactorial nature. In this thesis, it is described the design of new MTDLs able to tackle the multifactorial nature of AD. Such new MTDLs designed are less flexible analogues of Caproctamine, one of the first MTDL owing biological properties useful for the AD treatment. These new compounds are able to inhibit the enzymes AChE, beta-secretase and to inhibit both AChE-induced and self-induced beta-amyloid aggregation. In particular, the most potent compound of the series is able to inhibit AChE in subnanomolar range, to inhibit β-secretase in micromolar concentration and to inhibit both AChE-induced and self-induced beta-amyloid aggregation in micromolar concentration. Cancer, as AD, is a very complex pathology and many different therapeutical approaches are currently use for the treatment of such pathology. However, due to its multifactorial nature the MTDL approach could be, in principle, apply also to this pathology. Aim of this thesis has been the development of new molecules owing different structural motifs able to simultaneously interact with some of the multitude of targets responsible for the pathology. The designed compounds displayed cytotoxic activity in different cancer cell lines. In particular, the most potent compounds of the series have been further evaluated and they were able to bind DNA resulting 100-fold more potent than the reference compound Mitonafide. Furthermore, these compounds were able to trigger apoptosis through caspases activation and to inhibit PIN1 (preliminary result). This last protein is a very promising target because it is overexpressed in many human cancers, it functions as critical catalyst for multiple oncogenic pathways and in several cancer cell lines depletion of PIN1 determines arrest of mitosis followed by apoptosis induction. In conclusion, this study may represent a promising starting pint for the development of new MTDLs hopefully useful for cancer and AD treatment.
Resumo:
Staphylococcus aureus and Staphylococcus epidermidis are leading pathogens of implant-related infections. This study aimed at investigating the diverse distribution of different bacterial pathogen factors in most prevalent S. aureus and S. epidermidis strain types causing orthopaedic implant infections. In this study the presence both of the ica genes, encoding for biofilm exopolysaccharide production, and the insertion sequence IS256, a mobile element frequently associated to transposons, was investigated in relationship with the prevalence of antibiotic resistance among Staphylococcus epidermidis strains. The investigation was conducted on 70 clinical isolates derived from orthopaedic implant infections. Among the clinical isolates investigated a dramatic high level of association was found between the presence of ica genes as well as of IS256 and multiple resistance to all the antibiotics tested. Noteworthy, a striking full association between the presence of IS256 and resistance to gentamicin was found, being none of the IS256-negative strain resistant to this antibiotic. This association is probably because of the link of the corresponding aminoglycoside-resistance genes, and IS256, often co-existing within the same staphylococcal transposon. Moreover we investigated the prevalence of aac(6’)-Ie-aph(2’’), aph (3’) IIIa, and ant(4’) genes, encoding for the three forms of aminoglycoside-modifying enzymes (AME), responsible for resistance to aminoglycoside antibiotics. All isolates were characterized by automated ribotyping, so that the presence of antibiotic resistance determinants was investigated in strains exhibiting different ribopatterns. Interestingly, combinations of coexisting AME genes appeared to be typical of specific ribopatterns. 200 S. aureus isolates, categorized into ribogroups by automated ribotyping, i.e. rDNA restriction fragment length polymorphism analysis, were screened for the presence of a panel of adhesins genes, accessory gene regulatory (agr) polymorphisms and toxins. For many ribogroups, characteristic tandem genes arrangements could be identified. Surprisingly, the isolates of the most prevalent cluster, enlisting 27 isolates, were susceptible to almost all antibiotics and never possessed the lukD/lukE gene, thus suggesting the role of factors other than antibiotic resistance and the here investigated toxins in driving the major epidemic clone to the larger success. Afterwards, .in the predominant S. aureus cluster, the bbp gene encoding bone sialoprotein-binding protein appeared a typical virulence trait, found in 93% of the isolates. Conversely, the bbp gene was identified in just 10% of the remaining isolates of the collection. In this cluster, co-presence of bbp with the cna gene encoding collagen adhesin was a pattern consistently observed. These findings indicate a crucial role of both these adhesins, able to bind the most abundant bone proteins, in the pathogenesis of orthopaedic implant infections, there where biomaterials interface bone tissues. Moreover a PCR screening for the ebpS gene, conducted on over two hundred S. aureus clinical isolates from implant related infections revealed the detection of six strains exhibiting an altered amplicon size, shorter than expected. In order to elucidate the sequence changes present in these gene variants, the trait comprised between the primers was analyzed in all six isolates bearing the modification and in four isolates exhibiting the regular amplicon size. From nucleotide translation, the corresponding encoded protein was found to lack an entire peptide segment of 60 amino acids. These variants, missing an entire hydrophobic region, could actually facilitate current structural studies, helping to assess whether the absent domain is strictly necessary for a functional adhesin conformation and its contribution to the topology of the protein. This study suggests that epidemic clones appear to pursue different survival strategies, where adhesins, when present, exhibit diverse importance as virulence factors. A practical message arising from the present study is that strategies for the prevention and treatment of implant orthopaedic infections should target adhesins conjointly present in epidemic clones. Furthermore, the choice of reference strains for testing the anti-infective properties of biomaterials should focus on a selection of the most prevalent clones as they exhibit distinct profiles of adhesins.
Resumo:
HER-2 is a 185 kDa transmembrane receptor tyrosine kinase that belongs to the EGFR family. HER-2 is overexpressed in nearly 25% of human breast cancers and women with this subtype of breast cancer have a worse prognosis and frequently develop metastases. The progressive high number of HER-2-positive breast cancer patients with metastatic spread in the brain (up to half of women) has been attributed to the reduction in mortality, the effectiveness of Trastuzumab in killing metastatic cells in other organs and to its incapability to cross the blood-brain barrier. Apart from full-length-HER-2, a splice variant of HER-2 lacking exon 16 (here referred to as D16) was identified in human HER-2-positive breast cancers. Here, the contribution of HER-2 and D16 to mammary carcinogenesis was investigated in a model transgenic for both genes (F1 model). A dominant role of D16, especially in early stages of tumorigenesis, was suggested and the coexistence of heterogeneous levels of HER-2 and D16 in F1 tumors revealed the undeniable value of F1 strain as preclinical model of HER-2-positive breast cancer, closer resembling the human situation in respect to previous models. The therapeutical efficacy of anti-HER-2 agents, targeting HER-2 receptor (Trastuzumab, Lapatinib, R-LM249) or signaling effectors (Dasatinib, UO126, NVP-BKM120), was investigated in models of local or advanced HER-2-positive breast cancer. In contrast with early studies, data herein collected suggested that the presence of D16 can predict a better response to Trastuzumab and other agents targeting HER-2 receptor or Src activity. Using a multiorgan HER-2-positive metastatic model, the efficacy of NVP-BKM120 (PI3K inhibitor) in blocking the growth of brain metastases and the oncolytic ability of R-LM249 (HER-2-retargeted HSV) to reach and destroy metastatic HER-2-positive cancer cells were shown. Finally, exploiting the definition of “oncoantigen” given to HER-2, the immunopreventive activity of two vaccines on HER-2-positive mammary tumorigenesis was demonstrated.
Resumo:
Il CMV è l’agente patogeno più frequente dopo trapianto (Tx) di cuore determinando sia sindromi cliniche organo specifiche sia un danno immunomediato che può determinare rigetto acuto o malattia coronarica cronica (CAV). I farmaci antivirali in profilassi appaiono superiori all’approccio pre-sintomatico nel ridurre gli eventi da CMV, ma l’effetto anti-CMV dell’everolimus (EVE) in aggiunta alla profilassi antivirale non è stato ancora analizzato. SCOPO DELLO STUDIO: analizzare l’interazione tra le strategie di profilassi antivirale e l’uso di EVE o MMF nell’incidenza di eventi CMV correlati (infezione, necessità di trattamento, malattia/sindrome) nel Tx cardiaco. MATERIALI E METODI: sono stati inclusi pazienti sottoposti a Tx cardiaco e trattati con EVE o MMF e trattamento antivirale di profilassi o pre-sintomatico. L’infezione da CMV è stata monitorata con antigenemia pp65 e PCR DNA. La malattia/sindrome da CMV è stato considerato l’endpoint principale. RISULTATI: 193 pazienti (di cui 10% D+/R-) sono stati inclusi nello studio (42 in EVE e 149 in MMF). Nel complesso, l’infezione da CMV (45% vs. 79%), la necessità di trattamento antivirale (20% vs. 53%), e la malattia/sindrome da CMV (2% vs. 15%) sono risultati significativamente più bassi nel gruppo EVE che nel gruppo MMF (tutte le P<0.01). La profilassi è più efficace nel prevenire tutti gli outcomes rispetto alla strategia pre-sintomatica nei pazienti in MMF (P 0.03), ma non nei pazienti in EVE. In particolare, i pazienti in EVE e strategia pre-sintomatica hanno meno infezioni da CMV (48 vs 70%; P=0.05), e meno malattia/sindrome da CMV (0 vs. 8%; P=0.05) rispetto ai pazienti in MMF e profilassi. CONCLUSIONI: EVE riduce significamene gli eventi correlati al CMV rispetto al MMF. Il beneficio della profilassi risulta conservato solo nei pazienti trattati con MMF mentre l’EVE sembra fornire un ulteriore protezione nel ridurre gli eventi da CMV senza necessità di un estensivo trattamento antivirale.