2 resultados para Load tests
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
1) Background: The most common methods to evaluate clarithromycin resistance is the E-Test, but is time consuming. Resistance of Hp to clarithromycin is due to point mutations in the 23S rRNA. Eight different point mutations have been related to CH resistance, but the large majority of the clarithromycin resistance depends on three point mutations (A2142C, A2142G and A2143G). A novel PCR-based clarithromycin resistance assays, even on paraffin-embedded biopsy specimens, have been proposed. Aims: to assess clarithromycin resistance detecting these point mutation (E-Test as a reference method);secondly, to investigate relation with MIC values. Methods: Paraffin-embedded biopsies of patients Hp-positive were retrieved. The A2142C, A2142G and A2143G point mutations were detected by molecular analysis after DNA extraction by using a TaqMan real-time PCR. Results: The study enrolled 86 patients: 46 resistant and 40 sensible to CH. The Hp status was evaluated at endoscopy, by rapid urease test (RUT), histology and hp culture. According to real-time PCR, 37 specimens were susceptible to clarithromycin (wild type dna) whilst the remaining 49 specimens (57%) were resistant. A2143G is the most frequent mutation. A2142C always express a resistant phenotype and A2142G leads to a resitant phenotype only if homozigous. 2) Background: Colonoscopy work-load for endoscopy services is increasing due to colorectal cancer prevention. We tested a combination of faecal tests to improve accuracy and prioritize the access to colonoscopy. Methods: we tested a combination of fecal tests (FOBT, M2-PK and calprotectin) in a group of 280 patients requiring colonoscopy. Results: 47 patients had CRC and 85 had advanced adenoma/s at colonoscopy/histology. In case of single test, for CRC detection FOBT was the test with the highest specificity and PPV, M2-PK had the highest sensitivity and higher NPV. Combination was more interesting in term of PPV. And the best combination of tests was i-FOBT + M2-PK.
Resumo:
Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.