5 resultados para Living labs

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the aim to provide people with sustainable options, engineers are ethically required to hold the safety, health and welfare of the public paramount and to satisfy society's need for sustainable development. The global crisis and related sustainability challenges are calling for a fundamental change in culture, structures and practices. Sustainability Transitions (ST) have been recognized as promising frameworks for radical system innovation towards sustainability. In order to enhance the effectiveness of transformative processes, both the adoption of a transdisciplinary approach and the experimentation of practices are crucial. The evolution of approaches towards ST provides a series of inspiring cases which allow to identify advances in making sustainability transitions happen. In this framework, the thesis has emphasized the role of Transition Engineering (TE). TE adopts a transdisciplinary approach for engineering to face the sustainability challenges and address the risks of un-sustainability. With this purpose, a definition of Transition Technologies is provided as a valid instruments to contribute to ST. In the empirical section, several transition initiatives have been analysed especially at the urban level. As a consequence, the model of living-lab of sustainability has crucially emerged. Living-labs are environments in which innovative technologies and services are co-created with users active participation. In this framework, university can play a key role as learning organization. The core of the thesis has concerned the experimental application of transition approach within the School of Engineering and Architecture of University of Bologna at Terracini Campus. The final vision is to realize a living-lab of sustainability. Particularly, a Transition Team has been established and several transition experiments have been conducted. The final result is not only the improvement of sustainability and resilience of the Terracini Campus, but the demonstration that university can generate solutions and strategies that tackle the complex, dynamic factors fuelling the global crisis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knee joint is a key structure of the human locomotor system. The knowledge of how each single anatomical structure of the knee contributes to determine the physiological function of the knee, is of fundamental importance for the development of new prostheses and novel clinical, surgical, and rehabilitative procedures. In this context, a modelling approach is necessary to estimate the biomechanic function of each anatomical structure during daily living activities. The main aim of this study was to obtain a subject-specific model of the knee joint of a selected healthy subject. In particular, 3D models of the cruciate ligaments and of the tibio-femoral articular contact were proposed and developed using accurate bony geometries and kinematics reliably recorded by means of nuclear magnetic resonance and 3D video-fluoroscopy from the selected subject. Regarding the model of the cruciate ligaments, each ligament was modelled with 25 linear-elastic elements paying particular attention to the anatomical twisting of the fibres. The devised model was as subject-specific as possible. The geometrical parameters were directly estimated from the experimental measurements, whereas the only mechanical parameter of the model, the elastic modulus, had to be considered from the literature because of the invasiveness of the needed measurements. Thus, the developed model was employed for simulations of stability tests and during living activities. Physiologically meaningful results were always obtained. Nevertheless, the lack of subject-specific mechanical characterization induced to design and partially develop a novel experimental method to characterize the mechanics of the human cruciate ligaments in living healthy subjects. Moreover, using the same subject-specific data, the tibio-femoral articular interaction was modelled investigating the location of the contact point during the execution of daily motor tasks and the contact area at the full extension with and without the whole body weight of the subject. Two different approaches were implemented and their efficiency was evaluated. Thus, pros and cons of each approach were discussed in order to suggest future improvements of this methodologies. The final results of this study will contribute to produce useful methodologies for the investigation of the in-vivo function and pathology of the knee joint during the execution of daily living activities. Thus, the developed methodologies will be useful tools for the development of new prostheses, tools and procedures both in research field and in diagnostic, surgical and rehabilitative fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysts, politicians and international players from all over the world look at China as one of the most powerful countries on the international scenario, and as a country whose economic development can significantly impact on the economies of the rest of the world. However many aspects of this country have still to be investigated. First the still fundamental role played by Chinese rural areas for the general development of the country from a political, economic and social point of view. In particular, the way in which the rural areas have influenced the social stability of the whole country has been widely discussed due to their strict relationship with the urban areas where most people from the countryside emigrate searching for a job and a better life. In recent years many studies have mostly focused on the urbanization phenomenon with little interest in the living conditions in rural areas and in the deep changes which have occurred in some, mainly agricultural provinces. An analysis of the level of infrastructure is one of the main aspects which highlights the principal differences in terms of living conditions between rural and urban areas. In this thesis, I first carried out the analysis through the multivariate statistics approach (Principal Component Analysis and Cluster Analysis) in order to define the new map of rural areas based on the analysis of living conditions. In the second part I elaborated an index (Living Conditions Index) through the Fuzzy Expert/Inference System. Finally I compared this index (LCI) to the results obtained from the cluster analysis drawing geographic maps. The data source is the second national agricultural census of China carried out in 2006. In particular, I analysed the data refer to villages but aggregated at province level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is one of the principal causes of death in the world; almost 8.2 million of deaths were counted in 2012. Emerging evidences indicate that most of the tumors have an increased glycolytic rate and a detriment of oxidative phosphorylation to support abnormal cell proliferation; this phenomenon is known as aerobic glycolysis or Warburg effect. This switching toward glycolysis implies that cancer tissues metabolize approximately tenfold more glucose to lactate in a given time and the amount of lactate released from cancer tissues is much greater than from normal ones. In view of these fundamental discoveries alterations of the cellular metabolism should be considered a crucial hallmark of cancer. Therefore, the investigation of the metabolic differences between normal and transformed cells is important in cancer research and it might find clinical applications. The aim of the project was to investigate the cellular metabolic alterations at single cell level, by monitoring glucose and lactate, in order to provide a better insight in cancer research. For this purpose, electrochemical techniques have been applied. Enzyme-based electrode biosensors for lactate and glucose were –ad hoc- optimized within the project and used as probes for Scanning Electrochemical Microscopy (SECM). The UME biosensor manufacturing and optimization represented a consistent part of the work and a full description of the sensor preparation protocols and of the characterization methods employed is reported. This set-up (SECM used with microbiosensor probes) enabled the non-invasive study of cellular metabolism at single cell level. The knowledge of cancer cell metabolism is required to design more efficient treatment strategies.