3 resultados para Literature and history.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Diferencialmente conjugando a combinação de três contextos de análise: Brasil, Portugal e África. Esta tese aborda a relação criada entre os espaço histórico-políticos do "Atlântico Sul e suas formas de representação nos diferentes contextos nacionais que envolvem o desenvolvimento de novas perspectivas teóricas de investigação interdisciplinar, entre a literatura e história, especialmente nos espaços da geografia e literatura de São Tomé e Príncipe e Brasil.
Resumo:
The first part of my thesis presents an overview of the different approaches used in the past two decades in the attempt to forecast epileptic seizure on the basis of intracranial and scalp EEG. Past research could reveal some value of linear and nonlinear algorithms to detect EEG features changing over different phases of the epileptic cycle. However, their exact value for seizure prediction, in terms of sensitivity and specificity, is still discussed and has to be evaluated. In particular, the monitored EEG features may fluctuate with the vigilance state and lead to false alarms. Recently, such a dependency on vigilance states has been reported for some seizure prediction methods, suggesting a reduced reliability. An additional factor limiting application and validation of most seizure-prediction techniques is their computational load. For the first time, the reliability of permutation entropy [PE] was verified in seizure prediction on scalp EEG data, contemporarily controlling for its dependency on different vigilance states. PE was recently introduced as an extremely fast and robust complexity measure for chaotic time series and thus suitable for online application even in portable systems. The capability of PE to distinguish between preictal and interictal state has been demonstrated using Receiver Operating Characteristics (ROC) analysis. Correlation analysis was used to assess dependency of PE on vigilance states. Scalp EEG-Data from two right temporal epileptic lobe (RTLE) patients and from one patient with right frontal lobe epilepsy were analysed. The last patient was included only in the correlation analysis, since no datasets including seizures have been available for him. The ROC analysis showed a good separability of interictal and preictal phases for both RTLE patients, suggesting that PE could be sensitive to EEG modifications, not visible on visual inspection, that might occur well in advance respect to the EEG and clinical onset of seizures. However, the simultaneous assessment of the changes in vigilance showed that: a) all seizures occurred in association with the transition of vigilance states; b) PE was sensitive in detecting different vigilance states, independently of seizure occurrences. Due to the limitations of the datasets, these results cannot rule out the capability of PE to detect preictal states. However, the good separability between pre- and interictal phases might depend exclusively on the coincidence of epileptic seizure onset with a transition from a state of low vigilance to a state of increased vigilance. The finding of a dependency of PE on vigilance state is an original finding, not reported in literature, and suggesting the possibility to classify vigilance states by means of PE in an authomatic and objectic way. The second part of my thesis provides the description of a novel behavioral task based on motor imagery skills, firstly introduced (Bruzzo et al. 2007), in order to study mental simulation of biological and non-biological movement in paranoid schizophrenics (PS). Immediately after the presentation of a real movement, participants had to imagine or re-enact the very same movement. By key release and key press respectively, participants had to indicate when they started and ended the mental simulation or the re-enactment, making it feasible to measure the duration of the simulated or re-enacted movements. The proportional error between duration of the re-enacted/simulated movement and the template movement were compared between different conditions, as well as between PS and healthy subjects. Results revealed a double dissociation between the mechanisms of mental simulation involved in biological and non-biologial movement simulation. While for PS were found large errors for simulation of biological movements, while being more acurate than healthy subjects during simulation of non-biological movements. Healthy subjects showed the opposite relationship, making errors during simulation of non-biological movements, but being most accurate during simulation of non-biological movements. However, the good timing precision during re-enactment of the movements in all conditions and in both groups of participants suggests that perception, memory and attention, as well as motor control processes were not affected. Based upon a long history of literature reporting the existence of psychotic episodes in epileptic patients, a longitudinal study, using a slightly modified behavioral paradigm, was carried out with two RTLE patients, one patient with idiopathic generalized epilepsy and one patient with extratemporal lobe epilepsy. Results provide strong evidence for a possibility to predict upcoming seizures in RTLE patients behaviorally. In the last part of the thesis it has been validated a behavioural strategy based on neurobiofeedback training, to voluntarily control seizures and to reduce there frequency. Three epileptic patients were included in this study. The biofeedback was based on monitoring of slow cortical potentials (SCPs) extracted online from scalp EEG. Patients were trained to produce positive shifts of SCPs. After a training phase patients were monitored for 6 months in order to validate the ability of the learned strategy to reduce seizure frequency. Two of the three refractory epileptic patients recruited for this study showed improvements in self-management and reduction of ictal episodes, even six months after the last training session.
Resumo:
This work focuses on magnetohydrodynamic (MHD) mixed convection flow of electrically conducting fluids enclosed in simple 1D and 2D geometries in steady periodic regime. In particular, in Chapter one a short overview is given about the history of MHD, with reference to papers available in literature, and a listing of some of its most common technological applications, whereas Chapter two deals with the analytical formulation of the MHD problem, starting from the fluid dynamic and energy equations and adding the effects of an external imposed magnetic field using the Ohm's law and the definition of the Lorentz force. Moreover a description of the various kinds of boundary conditions is given, with particular emphasis given to their practical realization. Chapter three, four and five describe the solution procedure of mixed convective flows with MHD effects. In all cases a uniform parallel magnetic field is supposed to be present in the whole fluid domain transverse with respect to the velocity field. The steady-periodic regime will be analyzed, where the periodicity is induced by wall temperature boundary conditions, which vary in time with a sinusoidal law. Local balance equations of momentum, energy and charge will be solved analytically and numerically using as parameters either geometrical ratios or material properties. In particular, in Chapter three the solution method for the mixed convective flow in a 1D vertical parallel channel with MHD effects is illustrated. The influence of a transverse magnetic field will be studied in the steady periodic regime induced by an oscillating wall temperature. Analytical and numerical solutions will be provided in terms of velocity and temperature profiles, wall friction factors and average heat fluxes for several values of the governing parameters. In Chapter four the 2D problem of the mixed convective flow in a vertical round pipe with MHD effects is analyzed. Again, a transverse magnetic field influences the steady periodic regime induced by the oscillating wall temperature of the wall. A numerical solution is presented, obtained using a finite element approach, and as a result velocity and temperature profiles, wall friction factors and average heat fluxes are derived for several values of the Hartmann and Prandtl numbers. In Chapter five the 2D problem of the mixed convective flow in a vertical rectangular duct with MHD effects is discussed. As seen in the previous chapters, a transverse magnetic field influences the steady periodic regime induced by the oscillating wall temperature of the four walls. The numerical solution obtained using a finite element approach is presented, and a collection of results, including velocity and temperature profiles, wall friction factors and average heat fluxes, is provided for several values of, among other parameters, the duct aspect ratio. A comparison with analytical solutions is also provided, as a proof of the validity of the numerical method. Chapter six is the concluding chapter, where some reflections on the MHD effects on mixed convection flow will be made, in agreement with the experience and the results gathered in the analyses presented in the previous chapters. In the appendices special auxiliary functions and FORTRAN program listings are reported, to support the formulations used in the solution chapters.