7 resultados para Liquid Metal Anodes

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy Liquid Metal Cooled Reactors are among the concepts, fostered by the GIF, as potentially able to comply with stringent safety, economical, sustainability, proliferation resistance and physical protection requirements. The increasing interest around these innovative systems has highlighted the lack of tools specifically dedicated to their core design stage. The present PhD thesis summarizes the three years effort of, partially, closing the mentioned gap, by rationally defining the role of codes in core design and by creating a development methodology for core design-oriented codes (DOCs) and its subsequent application to the most needed design areas. The covered fields are, in particular, the fuel assembly thermal-hydraulics and the fuel pin thermo-mechanics. Regarding the former, following the established methodology, the sub-channel code ANTEO+ has been conceived. Initially restricted to the forced convection regime and subsequently extended to the mixed one, ANTEO+, via a thorough validation campaign, has been demonstrated a reliable tool for design applications. Concerning the fuel pin thermo-mechanics, the will to include safety-related considerations at the outset of the pin dimensioning process, has given birth to the safety-informed DOC TEMIDE. The proposed DOC development methodology has also been applied to TEMIDE; given the complex interdependence patterns among the numerous phenomena involved in an irradiated fuel pin, to optimize the code final structure, a sensitivity analysis has been performed, in the anticipated application domain. The development methodology has also been tested in the verification and validation phases; the latter, due to the low availability of experiments truly representative of TEMIDE's application domain, has only been a preliminary attempt to test TEMIDE's capabilities in fulfilling the DOC requirements upon which it has been built. In general, the capability of the proposed development methodology for DOCs in delivering tools helping the core designer in preliminary setting the system configuration has been proven.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this work is to develop a numerical platform for the turbulence modeling and optimal control of liquid metal flows. Thanks to their interesting thermal properties, liquid metals are widely studied as coolants for heat transfer applications in the nuclear context. However, due to their low Prandtl numbers, the standard turbulence models commonly used for coolants as air or water are inadequate. Advanced turbulence models able to capture the anisotropy in the flow and heat transfer are then necessary. In this thesis, a new anisotropic four-parameter turbulence model is presented and validated. The proposed model is based on explicit algebraic models and solves four additional transport equations for dynamical and thermal turbulent variables. For the validation of the model, several flow configurations are considered for different Reynolds and Prandtl numbers, namely fully developed flows in a plane channel and cylindrical pipe, and forced and mixed convection in a backward-facing step geometry. Since buoyancy effects cannot be neglected in liquid metals-cooled fast reactors, the second aim of this work is to provide mathematical and numerical tools for the simulation and optimization of liquid metals in mixed and natural convection. Optimal control problems for turbulent buoyant flows are studied and analyzed with the Lagrange multipliers method. Numerical algorithms for optimal control problems are integrated into the numerical platform and several simulations are performed to show the robustness, consistency, and feasibility of the method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The research activity carried out in the Brasimone Research Center of ENEA concerns the development and mechanical characterization of steels conceived as structural materials for future fission reactors (Heavy Liquid Metal IV Generation reactors: MYRRHA and ALFRED) and for the future fusion reactor DEMO. Within this framework, two parallel lines of research have been carried out: (i) characterization in liquid lead of steels and weldings for the components of the IV Generation fission reactors (GIV) by means of creep and SSRT (Slow Strain Rate Tensile) tests; (ii) development and screening on mechanical properties of RAFM (Reduced Activation Ferritic Martensitic) steels to be employed as structural materials of the future DEMO fusion reactor. The doctoral work represents therefore a comprehensive report of the research carried out on nuclear materials both from the point of view of the qualification of existing (commercial) materials for their application in the typical environmental conditions of 4th generation fission reactors operating with lead as coolant, and from the point of view of the metallurgical study (with annexed microstructural and mechanical characterization of the selected compositions / Thermo Mechanical Treatment (TMT) options) of new compositional variants to be proposed for the “Breeding Blanket” of the future DEMO Fusion Reactor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Batteries should be refined depending on their application for a future in which the sustainable energy demand increases. On the one hand, it is fundamental to improve their safety, prevent failures, increase energy density, and reduce production costs. On the other hand, new battery materials and architecture are required to satisfy the growing demand. This thesis explores different electrochemical energy storage systems and new methodologies to investigate complex and dynamic processes. Lithium-ion batteries are described in all their cell components. In these systems, this thesis investigates negative electrodes. Both the development of new sustainable materials and new in situ electrode characterization methods were explored. One strategy to achieve high-energy systems is employing lithium metal anodes. In this framework, ammonium hexafluorophosphate is demonstrated to be a suitable additive for stabilizing the interphase and preventing uncontrolled dendritic deposition. Deposition/stripping cycles, electrochemical impedance spectroscopy, in situ optical microscopy, and operando confocal Raman spectroscopy have been used to study lithium metal-electrolyte interphase in the presence of the additive. Redox Flow Batteries (RFBs) are proposed as a sustainable alternative for stationary applications. An all-copper aqueous RFB (CuRFB) has been studied in all its aspects. For the electrolyte optimization, spectro-electrochemical tests in diluted solution have been used to get information on the electrolyte’s electrochemical behaviour with different copper complexes distributions. In concentrated solutions, the effects of copper-to-ligand ratios, the concentration, and the counter-ion of the complexing agent were evaluated. Electrode thermal treatment was optimized, finding a compromise between the electrochemical performance and the carbon footprint. On the membrane side, a new method for permeability studies was designed using scanning electrochemical microscopy (SECM). The Cu(II) permeability of several membranes was tested, obtaining direct visualization of Cu(II) concentration in space. Also, two spectrophotometric approaches were designed for SoC monitoring systems for negative and positive half-cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The worldwide demand for a clean and low-fuel-consuming transport promotes the development of safe, high energy and power electrochemical storage and conversion systems. Lithium-ion batteries (LIBs) are considered today the best technology for this application as demonstrated by the recent interest of automotive industry in hybrid (HEV) and electric vehicles (EV) based on LIBs. This thesis work, starting from the synthesis and characterization of electrode materials and the use of non-conventional electrolytes, demonstrates that LIBs with novel and safe electrolytes and electrode materials meet the targets of specific energy and power established by U.S.A. Department of Energy (DOE) for automotive application in HEV and EV. In chapter 2 is reported the origin of all chemicals used, the description of the instruments used for synthesis and chemical-physical characterizations, the electrodes preparation, the batteries configuration and the electrochemical characterization procedure of electrodes and batteries. Since the electrolyte is the main critical point of a battery, in particular in large- format modules, in chapter 3 we focused on the characterization of innovative and safe electrolytes based on ionic liquids (characterized by high boiling/decomposition points, thermal and electrochemical stability and appreciable conductivity) and mixtures of ionic liquid with conventional electrolyte. In chapter 4 is discussed the microwave accelerated sol–gel synthesis of the carbon- coated lithium iron phosphate (LiFePO 4 -C), an excellent cathode material for LIBs thanks to its intrinsic safety and tolerance to abusive conditions, which showed excellent electrochemical performance in terms of specific capacity and stability. In chapter 5 are presented the chemical-physical and electrochemical characterizations of graphite and titanium-based anode materials in different electrolytes. We also characterized a new anodic material, amorphous SnCo alloy, synthetized with a nanowire morphology that showed to strongly enhance the electrochemical stability of the material during galvanostatic full charge/discharge cycling. Finally, in chapter 6, are reported different types of batteries, assembled using the LiFePO 4 -C cathode material, different anode materials and electrolytes, characterized by deep galvanostatic charge/discharge cycles at different C-rates and by test procedures of the DOE protocol for evaluating pulse power capability and available energy. First, we tested a battery with the innovative cathode material LiFePO 4 -C and conventional graphite anode and carbonate-based electrolyte (EC DMC LiPF 6 1M) that demonstrated to surpass easily the target for power-assist HEV application. Given that the big concern of conventional lithium-ion batteries is the flammability of highly volatile organic carbonate- based electrolytes, we made safe batteries with electrolytes based on ionic liquid (IL). In order to use graphite anode in IL electrolyte we added to the IL 10% w/w of vinylene carbonate (VC) that produces a stable SEI (solid electrolyte interphase) and prevents the graphite exfoliation phenomenon. Then we assembled batteries with LiFePO 4 -C cathode, graphite anode and PYR 14 TFSI 0.4m LiTFSI with 10% w/w of VC that overcame the DOE targets for HEV application and were stable for over 275 cycles. We also assembled and characterized ―high safety‖ batteries with electrolytes based on pure IL, PYR 14 TFSI with 0.4m LiTFSI as lithium salt, and on mixture of this IL and standard electrolyte (PYR 14 TFSI 50% w/w and EC DMC LiPF 6 50% w/w), using titanium-based anodes (TiO 2 and Li 4 Ti 5 O 12 ) that are commonly considered safer than graphite in abusive conditions. The batteries bearing the pure ionic liquid did not satisfy the targets for HEV application, but the batteries with Li 4 Ti 5 O 12 anode and 50-50 mixture electrolyte were able to surpass the targets. We also assembled and characterized a lithium battery (with lithium metal anode) with a polymeric electrolyte based on poly-ethilenoxide (PEO 20 – LiCF 3 SO 3 +10%ZrO 2 ), which satisfied the targets for EV application and showed a very impressive cycling stability. In conclusion, we developed three lithium-ion batteries of different chemistries that demonstrated to be suitable for application in power-assist hybrid vehicles: graphite/EC DMC LiPF 6 /LiFePO 4 -C, graphite/PYR 14 TFSI 0.4m LiTFSI with 10% VC/LiFePO 4 -C and Li 4 T i5 O 12 /PYR 14 TFSI 50%-EC DMC LiPF 6 50%/LiFePO 4 -C. We also demonstrated that an all solid-state polymer lithium battery as Li/PEO 20 –LiCF 3 SO 3 +10%ZrO 2 /LiFePO 4 -C is suitable for application on electric vehicles. Furthermore we developed a promising anodic material alternative to the graphite, based on SnCo amorphous alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochar is a carbonaceous material produced through pyrolysis of biomass. One promising application of biochar is phosphorus recovery from wastewater. Phosphorus is a vital nutrient for plant growth, but its use in fertilizers often leads to runoff or leaching. Wastewater treatment plants discharge large amounts of phosphorus-rich wastewater, contributing to eutrophication and ecological harm. Biochar can sorb phosphorus, retaining it in solid form. In this thesis, two composites made of biomass and dolomite or shells exhibited superior phosphate sorption compared to biochar alone, reaching up to 100% sorption. Biochar also finds use in soil remediation, specifically in cleaning up contaminated soil. Polycyclic aromatic hydrocarbons (PAHs), which can be carcinogenic and toxic, can be present in soil. Biochar adsorb PAHs, preventing their leakage or bioaccumulation. Hetero-PAHs, a subclass of PAHs with nitrogen, sulfur, or oxygen atoms in their ring structures, are particularly challenging to degrade. Little is known about their behavior or sorption onto biochar. In this thesis, biochar and activated carbon were effective in immobilizing PAHs and hetero-PAHs in real soils, with rates of immobilization reaching 100%. Biochar performed equally or better than activated carbon, offering a cost-effective alternative due to its lower price. Biochar reduce of metal(loid)s mobility in soil. Metal(loid)s like lead, zinc, and arsenic can contaminate soil through industrial sources, agricultural runoff, and other pollution, and are toxic to plants and animals, rendering the soil unsuitable for agriculture. When biochar is added to contaminated soil, it binds to metal(loid)s, preventing leaching into the environment. A biomass-dolomite composite was compared to activated carbon for immobilizing metal(loid)s in contaminated soils. The composite generally outperformed activated carbon and exhibited the ability to immobilize arsenic. In summary, biochar shows promise for phosphorus recovery, soil remediation, and reducing the mobility of heavy metals, offering cost-effective and sustainable solutions to these environmental challenges.