2 resultados para Limited Subtropical Environments

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studies with the analysis of wild dolphin peripheral blood leukocytes, which have the potential to be informative of the animal’s global immune status. Transcriptomic profiles from almost 200 individual samples were analyzed using a newly developed species-specific microarray to assess its value as a prognostic and diagnostic tool. Functional genomics analyses were informative of stress-induced gene expression profiles and also of geographical location specific transcriptomic signatures, determined by the interaction of genetic, disease and environmental factors. We have developed quantitative metrics to unambiguously characterize the phenotypic properties of dolphin cells in culture. These quantitative metrics can provide identifiable characteristics and baseline data which will enable identification of changes in the cells due to time in culture. We have also developed a novel protocol to isolate primary cultures from cryopreserved tissue of stranded marine mammals, establishing a tissue (and cell) biorepository, a new approach that can provide a solution to the limited availability of samples. The work presented represents the development and application of tools for the study of the biology, health and physiology of the dolphin, and establishes their relevance for future studies of the impact on the dolphin of environmental infection and stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatically recognizing faces captured under uncontrolled environments has always been a challenging topic in the past decades. In this work, we investigate cohort score normalization that has been widely used in biometric verification as means to improve the robustness of face recognition under challenging environments. In particular, we introduce cohort score normalization into undersampled face recognition problem. Further, we develop an effective cohort normalization method specifically for the unconstrained face pair matching problem. Extensive experiments conducted on several well known face databases demonstrate the effectiveness of cohort normalization on these challenging scenarios. In addition, to give a proper understanding of cohort behavior, we study the impact of the number and quality of cohort samples on the normalization performance. The experimental results show that bigger cohort set size gives more stable and often better results to a point before the performance saturates. And cohort samples with different quality indeed produce different cohort normalization performance. Recognizing faces gone after alterations is another challenging problem for current face recognition algorithms. Face image alterations can be roughly classified into two categories: unintentional (e.g., geometrics transformations introduced by the acquisition devide) and intentional alterations (e.g., plastic surgery). We study the impact of these alterations on face recognition accuracy. Our results show that state-of-the-art algorithms are able to overcome limited digital alterations but are sensitive to more relevant modifications. Further, we develop two useful descriptors for detecting those alterations which can significantly affect the recognition performance. In the end, we propose to use the Structural Similarity (SSIM) quality map to detect and model variations due to plastic surgeries. Extensive experiments conducted on a plastic surgery face database demonstrate the potential of SSIM map for matching face images after surgeries.