17 resultados para Lead Analysis Data processing

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis two major topics inherent with medical ultrasound images are addressed: deconvolution and segmentation. In the first case a deconvolution algorithm is described allowing statistically consistent maximum a posteriori estimates of the tissue reflectivity to be restored. These estimates are proven to provide a reliable source of information for achieving an accurate characterization of biological tissues through the ultrasound echo. The second topic involves the definition of a semi automatic algorithm for myocardium segmentation in 2D echocardiographic images. The results show that the proposed method can reduce inter- and intra observer variability in myocardial contours delineation and is feasible and accurate even on clinical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis represents the conclusive outcome of the European Joint Doctorate programmein Law, Science & Technology funded by the European Commission with the instrument Marie Skłodowska-Curie Innovative Training Networks actions inside of the H2020, grantagreement n. 814177. The tension between data protection and privacy from one side, and the need of granting further uses of processed personal datails is investigated, drawing the lines of the technological development of the de-anonymization/re-identification risk with an explorative survey. After acknowledging its span, it is questioned whether a certain degree of anonymity can still be granted focusing on a double perspective: an objective and a subjective perspective. The objective perspective focuses on the data processing models per se, while the subjective perspective investigates whether the distribution of roles and responsibilities among stakeholders can ensure data anonymity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present PhD thesis was focused on the development and application of chemical methodology (Py-GC-MS) and data-processing method by multivariate data analysis (chemometrics). The chromatographic and mass spectrometric data obtained with this technique are particularly suitable to be interpreted by chemometric methods such as PCA (Principal Component Analysis) as regards data exploration and SIMCA (Soft Independent Models of Class Analogy) for the classification. As a first approach, some issues related to the field of cultural heritage were discussed with a particular attention to the differentiation of binders used in pictorial field. A marker of egg tempera the phosphoric acid esterified, a pyrolysis product of lecithin, was determined using HMDS (hexamethyldisilazane) rather than the TMAH (tetramethylammonium hydroxide) as a derivatizing reagent. The validity of analytical pyrolysis as tool to characterize and classify different types of bacteria was verified. The FAMEs chromatographic profiles represent an important tool for the bacterial identification. Because of the complexity of the chromatograms, it was possible to characterize the bacteria only according to their genus, while the differentiation at the species level has been achieved by means of chemometric analysis. To perform this study, normalized areas peaks relevant to fatty acids were taken into account. Chemometric methods were applied to experimental datasets. The obtained results demonstrate the effectiveness of analytical pyrolysis and chemometric analysis for the rapid characterization of bacterial species. Application to a samples of bacterial (Pseudomonas Mendocina), fungal (Pleorotus ostreatus) and mixed- biofilms was also performed. A comparison with the chromatographic profiles established the possibility to: • Differentiate the bacterial and fungal biofilms according to the (FAMEs) profile. • Characterize the fungal biofilm by means the typical pattern of pyrolytic fragments derived from saccharides present in the cell wall. • Individuate the markers of bacterial and fungal biofilm in the same mixed-biofilm sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in biomedical signal acquisition systems for motion analysis have led to lowcost and ubiquitous wearable sensors which can be used to record movement data in different settings. This implies the potential availability of large amounts of quantitative data. It is then crucial to identify and to extract the information of clinical relevance from the large amount of available data. This quantitative and objective information can be an important aid for clinical decision making. Data mining is the process of discovering such information in databases through data processing, selection of informative data, and identification of relevant patterns. The databases considered in this thesis store motion data from wearable sensors (specifically accelerometers) and clinical information (clinical data, scores, tests). The main goal of this thesis is to develop data mining tools which can provide quantitative information to the clinician in the field of movement disorders. This thesis will focus on motor impairment in Parkinson's disease (PD). Different databases related to Parkinson subjects in different stages of the disease were considered for this thesis. Each database is characterized by the data recorded during a specific motor task performed by different groups of subjects. The data mining techniques that were used in this thesis are feature selection (a technique which was used to find relevant information and to discard useless or redundant data), classification, clustering, and regression. The aims were to identify high risk subjects for PD, characterize the differences between early PD subjects and healthy ones, characterize PD subtypes and automatically assess the severity of symptoms in the home setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the digital age, e-health technologies play a pivotal role in the processing of medical information. As personal health data represents sensitive information concerning a data subject, enhancing data protection and security of systems and practices has become a primary concern. In recent years, there has been an increasing interest in the concept of Privacy by Design, which aims at developing a product or a service in a way that it supports privacy principles and rules. In the EU, Article 25 of the General Data Protection Regulation provides a binding obligation of implementing Data Protection by Design technical and organisational measures. This thesis explores how an e-health system could be developed and how data processing activities could be carried out to apply data protection principles and requirements from the design stage. The research attempts to bridge the gap between the legal and technical disciplines on DPbD by providing a set of guidelines for the implementation of the principle. The work is based on literature review, legal and comparative analysis, and investigation of the existing technical solutions and engineering methodologies. The work can be differentiated by theoretical and applied perspectives. First, it critically conducts a legal analysis on the principle of PbD and it studies the DPbD legal obligation and the related provisions. Later, the research contextualises the rule in the health care field by investigating the applicable legal framework for personal health data processing. Moreover, the research focuses on the US legal system by conducting a comparative analysis. Adopting an applied perspective, the research investigates the existing technical methodologies and tools to design data protection and it proposes a set of comprehensive DPbD organisational and technical guidelines for a crucial case study, that is an Electronic Health Record system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates the legal, ethical, technical, and psychological issues of general data processing and artificial intelligence practices and the explainability of AI systems. It consists of two main parts. In the initial section, we provide a comprehensive overview of the big data processing ecosystem and the main challenges we face today. We then evaluate the GDPR’s data privacy framework in the European Union. The Trustworthy AI Framework proposed by the EU’s High-Level Expert Group on AI (AI HLEG) is examined in detail. The ethical principles for the foundation and realization of Trustworthy AI are analyzed along with the assessment list prepared by the AI HLEG. Then, we list the main big data challenges the European researchers and institutions identified and provide a literature review on the technical and organizational measures to address these challenges. A quantitative analysis is conducted on the identified big data challenges and the measures to address them, which leads to practical recommendations for better data processing and AI practices in the EU. In the subsequent part, we concentrate on the explainability of AI systems. We clarify the terminology and list the goals aimed at the explainability of AI systems. We identify the reasons for the explainability-accuracy trade-off and how we can address it. We conduct a comparative cognitive analysis between human reasoning and machine-generated explanations with the aim of understanding how explainable AI can contribute to human reasoning. We then focus on the technical and legal responses to remedy the explainability problem. In this part, GDPR’s right to explanation framework and safeguards are analyzed in-depth with their contribution to the realization of Trustworthy AI. Then, we analyze the explanation techniques applicable at different stages of machine learning and propose several recommendations in chronological order to develop GDPR-compliant and Trustworthy XAI systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the growing attention of consumers towards their food, improvement of quality of animal products has become one of the main focus of research. To this aim, the application of modern molecular genetics approaches has been proved extremely useful and effective. This innovative drive includes all livestock species productions, including pork. The Italian pig breeding industry is unique because needs heavy pigs slaughtered at about 160 kg for the production of high quality processed products. For this reason, it requires precise meat quality and carcass characteristics. Two aspects have been considered in this thesis: the application of the transcriptome analysis in post mortem pig muscles as a possible method to evaluate meat quality parameters related to the pre mortem status of the animals, including health, nutrition, welfare, and with potential applications for product traceability (chapters 3 and 4); the study of candidate genes for obesity related traits in order to identify markers associated with fatness in pigs that could be applied to improve carcass quality (chapters 5, 6, and 7). Chapter three addresses the first issue from a methodological point of view. When we considered this issue, it was not obvious that post mortem skeletal muscle could be useful for transcriptomic analysis. Therefore we demonstrated that the quality of RNA extracted from skeletal muscle of pigs sampled at different post mortem intervals (20 minutes, 2 hours, 6 hours, and 24 hours) is good for downstream applications. Degradation occurred starting from 48 h post mortem even if at this time it is still possible to use some RNA products. In the fourth chapter, in order to demonstrate the potential use of RNA obtained up to 24 hours post mortem, we present the results of RNA analysis with the Affymetrix microarray platform that made it possible to assess the level of expression of more of 24000 mRNAs. We did not identify any significant differences between the different post mortem times suggesting that this technique could be applied to retrieve information coming from the transcriptome of skeletal muscle samples not collected just after slaughtering. This study represents the first contribution of this kind applied to pork. In the fifth chapter, we investigated as candidate for fat deposition the TBC1D1 [TBC1 (tre-2/USP6, BUB2, cdc16) gene. This gene is involved in mechanisms regulating energy homeostasis in skeletal muscle and is associated with predisposition to obesity in humans. By resequencing a fragment of the TBC1D1 gene we identified three synonymous mutations localized in exon 2 (g.40A>G, g.151C>T, and g.172T>C) and 2 polymorphisms localized in intron 2 (g.219G>A and g.252G>A). One of these polymorphisms (g.219G>A) was genotyped by high resolution melting (HRM) analysis and PCR-RFLP. Moreover, this gene sequence was mapped by radiation hybrid analysis on porcine chromosome 8. The association study was conducted in 756 performance tested pigs of Italian Large White and Italian Duroc breeds. Significant results were obtained for lean meat content, back fat thickness, visible intermuscular fat and ham weight. In chapter six, a second candidate gene (tribbles homolog 3, TRIB3) is analyzed in a study of association with carcass and meat quality traits. The TRIB3 gene is involved in energy metabolism of skeletal muscle and plays a role as suppressor of adipocyte differentiation. We identified two polymorphisms in the first coding exon of the porcine TRIB3 gene, one is a synonymous SNP (c.132T> C), a second is a missense mutation (c.146C> T, p.P49L). The two polymorphisms appear to be in complete linkage disequilibrium between and within breeds. The in silico analysis of the p.P49L substitution suggests that it might have a functional effect. The association study in about 650 pigs indicates that this marker is associated with back fat thickness in Italian Large White and Italian Duroc breeds in two different experimental designs. This polymorphisms is also associated with lactate content of muscle semimembranosus in Italian Large White pigs. Expression analysis indicated that this gene is transcribed in skeletal muscle and adipose tissue as well as in other tissues. In the seventh chapter, we reported the genotyping results for of 677 SNPs in extreme divergent groups of pigs chosen according to the extreme estimated breeding values for back fat thickness. SNPs were identified by resequencing, literature mining and in silico database mining. analysis, data reported in the literature of 60 candidates genes for obesity. Genotyping was carried out using the GoldenGate (Illumina) platform. Of the analyzed SNPs more that 300 were polymorphic in the genotyped population and had minor allele frequency (MAF) >0.05. Of these SNPs, 65 were associated (P<0.10) with back fat thickness. One of the most significant gene marker was the same TBC1D1 SNPs reported in chapter 5, confirming the role of this gene in fat deposition in pig. These results could be important to better define the pig as a model for human obesity other than for marker assisted selection to improve carcass characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con il trascorrere del tempo, le reti di stazioni permanenti GNSS (Global Navigation Satellite System) divengono sempre più un valido supporto alle tecniche di rilevamento satellitare. Esse sono al tempo stesso un’efficace materializzazione del sistema di riferimento e un utile ausilio ad applicazioni di rilevamento topografico e di monitoraggio per il controllo di deformazioni. Alle ormai classiche applicazioni statiche in post-processamento, si affiancano le misure in tempo reale sempre più utilizzate e richieste dall’utenza professionale. In tutti i casi risulta molto importante la determinazione di coordinate precise per le stazioni permanenti, al punto che si è deciso di effettuarla tramite differenti ambienti di calcolo. Sono stati confrontati il Bernese, il Gamit (che condividono l’approccio differenziato) e il Gipsy (che utilizza l’approccio indifferenziato). L’uso di tre software ha reso indispensabile l’individuazione di una strategia di calcolo comune in grado di garantire che, i dati ancillari e i parametri fisici adottati, non costituiscano fonte di diversificazione tra le soluzioni ottenute. L’analisi di reti di dimensioni nazionali oppure di reti locali per lunghi intervalli di tempo, comporta il processamento di migliaia se non decine di migliaia di file; a ciò si aggiunge che, talora a causa di banali errori, oppure al fine di elaborare test scientifici, spesso risulta necessario reiterare le elaborazioni. Molte risorse sono quindi state investite nella messa a punto di procedure automatiche finalizzate, da un lato alla preparazione degli archivi e dall’altro all’analisi dei risultati e al loro confronto qualora si sia in possesso di più soluzioni. Dette procedure sono state sviluppate elaborando i dataset più significativi messi a disposizione del DISTART (Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento del Territorio - Università di Bologna). E’ stato così possibile, al tempo stesso, calcolare la posizione delle stazioni permanenti di alcune importanti reti locali e nazionali e confrontare taluni fra i più importanti codici scientifici che assolvono a tale funzione. Per quanto attiene il confronto fra i diversi software si è verificato che: • le soluzioni ottenute dal Bernese e da Gamit (i due software differenziati) sono sempre in perfetto accordo; • le soluzioni Gipsy (che utilizza il metodo indifferenziato) risultano, quasi sempre, leggermente più disperse rispetto a quelle degli altri software e mostrano talvolta delle apprezzabili differenze numeriche rispetto alle altre soluzioni, soprattutto per quanto attiene la coordinata Est; le differenze sono però contenute in pochi millimetri e le rette che descrivono i trend sono comunque praticamente parallele a quelle degli altri due codici; • il citato bias in Est tra Gipsy e le soluzioni differenziate, è più evidente in presenza di determinate combinazioni Antenna/Radome e sembra essere legato all’uso delle calibrazioni assolute da parte dei diversi software. E’ necessario altresì considerare che Gipsy è sensibilmente più veloce dei codici differenziati e soprattutto che, con la procedura indifferenziata, il file di ciascuna stazione di ciascun giorno, viene elaborato indipendentemente dagli altri, con evidente maggior elasticità di gestione: se si individua un errore strumentale su di una singola stazione o se si decide di aggiungere o togliere una stazione dalla rete, non risulta necessario il ricalcolo dell’intera rete. Insieme alle altre reti è stato possibile analizzare la Rete Dinamica Nazionale (RDN), non solo i 28 giorni che hanno dato luogo alla sua prima definizione, bensì anche ulteriori quattro intervalli temporali di 28 giorni, intercalati di sei mesi e che coprono quindi un intervallo temporale complessivo pari a due anni. Si è così potuto verificare che la RDN può essere utilizzata per l’inserimento in ITRF05 (International Terrestrial Reference Frame) di una qualsiasi rete regionale italiana nonostante l’intervallo temporale ancora limitato. Da un lato sono state stimate le velocità ITRF (puramente indicative e non ufficiali) delle stazioni RDN e, dall’altro, è stata effettuata una prova di inquadramento di una rete regionale in ITRF, tramite RDN, e si è verificato che non si hanno differenze apprezzabili rispetto all’inquadramento in ITRF, tramite un congruo numero di stazioni IGS/EUREF (International GNSS Service / European REference Frame, SubCommission for Europe dello International Association of Geodesy).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and rupture velocity distributions on the fault plane. In this thesis, the ground motion simulation is obtained evaluating the representation integral in the frequency. The Green’s tractions are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique, based on a Delaunay’s triangulation on the fault plane. The rupture velocity is defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at separating the computation of the rupture velocity from the evaluation of the slip distribution, the latter being a linear problem, when the rupture velocity is fixed. The non-linear step is solved by optimization of an L2 misfit function between synthetic and real seismograms, and solution is searched by the use of the Neighbourhood Algorithm. The conjugate gradient method is used to solve the linear step instead. The developed methodology has been applied to the M7.2, Iwate Nairiku Miyagi, Japan, earthquake. The estimated magnitude seismic moment is 2.6326 dyne∙cm that corresponds to a moment magnitude MW 6.9 while the mean the rupture velocity is 2.0 km/s. A large slip patch extends from the hypocenter to the southern shallow part of the fault plane. A second relatively large slip patch is found in the northern shallow part. Finally, we gave a quantitative estimation of errors associates with the parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity carried out during my PhD was principally addressed to the development of portable microfluidic analytical devices based on biospecific molecular recognition reactions and CL detection. In particular, the development of biosensors required the study of different materials and procedures for their construction, with particular attention to the development of suitable immobilization procedures, fluidic systems and the selection of the suitable detectors. Different methods were exploited, such as gene probe hybridization assay or immunoassay, based on different platform (functionalized glass slide or nitrocellulose membrane) trying to improve the simplicity of the assay procedure. Different CL detectors were also employed and compared with each other in the search for the best compromise between portability and sensitivity. The work was therefore aimed at miniaturization and simplification of analytical devices and the study involved all aspects of the system, from the analytical methodology to the type of detector, in order to combine high sensitivity with easiness-of-use and rapidity. The latest development involving the use of smartphone as chemiluminescent detector paves the way for a new generation of analytical devices in the clinical diagnostic field thanks to the ideal combination of sensibility a simplicity of the CL with the day-by-day increase in the performance of the new generation smartphone camera. Moreover, the connectivity and data processing offered by smartphones can be exploited to perform analysis directly at home with simple procedures. The system could eventually be used to monitor patient health and directly notify the physician of the analysis results allowing a decrease in costs and an increase in the healthcare availability and accessibility.