2 resultados para Latin language--Study and teaching--Early works to 1800

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The early identification of responsive and resistant patients to androgen-receptor targeting agents (ARTA) in metastatic castration resistant-prostate cancer (CRPC) is not completely possible with PSA assessment and conventional imaging. Considering its ability to determine metabolic activity of lesions, PET assessment might be a promising tool. Materials and methods: We performed a monocentric prospective study in patients with metastatic CRPC under treatment with ARTA to evaluate the role of different PET radiotracers: 49 patients were randomized to receive 11C-Choline, 18F-FACBC or 68Ga-PSMA PET, one scan before therapy onset and one two months later. The primary aim was to investigate the performance of three different novel PET radiotracers for the early evaluation of response to ARTA in metastatic CRPC patients; with regards to this aim, the outcome evaluated was biochemical response (PSA reduction ≥50%). The secondary aim was to investigate the prognostic role of several semiquantitative PET parameters and their variations with the different radiotracers in terms of biochemical PFS (bPFS) and overall survival (OS). The study was promoted by the Italian Department of Health (code RF-2016-02364809). Results: With regards to the primary endpoint, at univariate analysis a statistically significant correlation was found between MTV_VARIATION% (p=0.018) and TLA_VARIATION% (p=0.025) with 68Ga-PSMA PET and biochemical response. As for the secondary endpoints, significant correlations with bPFS were found for 68Ga-PSMA PET MTV_TOT_PET1 (p=0.001), TLA_TOT_PET1 (p=0.025), MTV_VARIATION% (p=0.031). For OS, statistically significant correlations were found for: MAJ_SUV_MAX_PET1 with 11C-Choline PET (p=0.007); MTV_TOT_PET1 (p=0.004), MAJ_SUV_MAX_PET1 (p=0.029), SUVMAX_VARIATION% (p=0.04), MTV_VARIATION% (p=0.015), TLA_VARIATION% (p=0.03) with 68Ga-PSMA PET,; MTV_TOT_PET1 (p=0.011), TLA_TOT_PET1 (p=0.009), MAJ_SUV_MAX_PET1 (p=0.027), MTV_VARIATION% (p=0.048) with 18F-FACBC. Conclusions: Our prospective study highlighted that several 68Ga-PSMA and 18F-FACBC semiquantitative PET parameters and their variations present a prognostic value in terms of OS and bPFS and a correlation with biochemical response, that could help to assess response to ARTA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone remodelling is a fundamental mechanism for removing and replacing bone during adaptation of the skeleton to mechanical loads. Skeletal unloading leads to severe hypoxia (1%O2) in the bone microenvironment resulting in imbalanced bone remodelling that favours bone resorption. Hypoxia, in vivo, is a physiological condition for osteocytes, 5% O2 is more likely physiological for osteocytes than 20% O2, as osteocytes are embedded deep inside the mineralized bone matrix. Osteocytes are thought to be the mechanosensors of bone and have been shown to orchestrate bone formation and resorption. Oxygen-deprived osteocytes seem undergo apoptosis and actively stimulate osteoclasts. Hypoxia and oxidative stress increase 150-kDa oxygen-regulated protein (ORP 150) expression in different cell types. It is a novel endoplasmic-reticulum-associated chaperone induced by hypoxia/ischemia. It well known that ORP 150 plays an important role in the cellular adaptation to hypoxia, as anti-apoptotic factor, and seems to be involved in osteocytes differentiations. The aims of the present study are 1) to determine the cellular and molecular response of the osteocytes at two different conditions of oxygen deprivation, 1% and 5% of O2 compared to the atmospheric oxygen concentration at several time points. 2) To clarify the role of hypoxic osteocytes in bone homeostasis through the detection of releasing of soluble factors (RANKL, OPG, PGE2 and Sclerostin). 3) To detect the activation of osteoclast and osteoblast induced by condition media collected from hypoxic and normoxic osteocytes. The data obtained in this study shows that hypoxia compromises the viability of osteocytes and induces apoptosis. Unlike in other cells types, ORP 150 in MLO-Y4 does not seem to be regulated early during hypoxia. The release of soluble factors and the evaluation of osteoclast and osteoblast activation shows that osteocytes, grown under severe oxygen deprivation, play a role in the regulation of both bone resorption and bone formation.