3 resultados para Landscape structure
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The city is a collection of built structures and infrastructure embedded in socio-cultural processes: any investigation into a city’s transformations involves considerations on the degree to which its composite elements respond to socio-economical changes. The main purpose of this research is to investigate how transformations in the functional requirements of New York’s society have spurred, since the 1970s, changes in both the city’s urban structure and physical form. The present work examines the rise of Amenity Zones in New York, and investigates the transformations that have occurred in New York’s built environment since the 1970s. By applying qualitative measures and analyzing the relationship between urban amenities and the creative class, the present work has investigated changes in the urban structure and detected a hierarchical series of amenity zones classes, namely, Super Amenity Zones (SAZs), Nodal Amenity Zones (NAZs) and Peripheral Amenity Zones (PAZs). This series allows for a more comprehensive reading of the urban structure in a complex city like New York, bringing advancements to the amenity zone’s methodology. In order to examine the manner in which the other component of the city, the physical form, has changed or adapted to the new socio-economic condition, the present research has applied Conzenian analysis to a select study area, Atlantic Avenue. The results of this analysis reveal that, contrary to the urban structure, which changes rapidly, the physical form of New York is hard to modify completely, due to the resilience of the town plan and its elements, and to preservation laws; the city rather adapts to socio-economical changes through process of adaptive reuses or conversion. Concluding, this research has examined the dialectic between the ever-changing needs of society and the complexity of the built environment and urban structure, showing the different degrees to which the urban landscape modifies, reacts and sometimes adapts to the population’s functional requirements.
Resumo:
This PhD Thesis includes five main parts on diverse topics. The first two parts deal with the trophic ecology of wolves in Italy consequently to a recent increase of wild ungulates abundance. Data on wolf diet across time highlighted how wild ungulates are important food resource for wolves in Italy. Increasing wolf population, increasing numbers of wild ungulates and decreasing livestock consume are mitigating wolf-man conflicts in Italy in the near future. In the third part, non-invasive genetic sampling techniques were used to obtain genotypes and genders of about 400 wolves. Thus, wolf packs were genetically reconstructed using diverse population genetic and parentage software. Combining the results on pack structure and genetic relatedness with sampling locations, home ranges of wolf packs and dispersal patterns were identified. These results, particularly important for the conservation management of wolves in Italy, illustrated detailed information that can be retrieved from genetic identification of individuals. In the fourth part, wolf locations were combined with environmental information obtained as GIS-layers. Modern species distribution models (niche models) were applied to infer potential wolf distribution and predation risk. From the resulting distribution maps, information pastures with the highest risk of depredation were derived. This is particularly relevant as it allows identifying those areas under danger of carnivore attack on livestock. Finally, in the fifth part, habitat suitability models were combined with landscape genetic analysis. On one side landscape genetic analyses on the Italian wolves provided new information on the dynamics and connectivity of the population and, on the other side, a profound analysis of the effects that habitat suitability methods had on the parameterization of landscape genetic analyses was carried out to contributed significantly to landscape genetic theory.
Resumo:
Introgression of domestic cat genes into European wildcat (Felis silvestris silvestris) populations and reduction of wildcats’ range in Europe, leaded by habitat loss and fragmentation, are considered two of the main conservation problems for this endangered feline. This thesis addressed the questions related with the artificial hybridization and populations’ fragmentation, using a conservation genetics perspective. We combined the use of highly polymorphic loci, Bayesian statistical inferences and landscape analyses tools to investigate the origin of the geographic-genetic substructure of European wildcats (Felis silvestris silvestris) in Italy and Europe. The genetic variability of microsatellites evidenced that European wildcat populations currently distributed in Italy differentiated in, and expanded from two distinct glacial refuges during the Last Glacial Maximum. The genetic and geographic substructure detected between the eastern and western sides of the Apennine ridge, resulted by adaptation to specific ecological conditions of the Mediterranean habitats. European wildcat populations in Europe are strongly structured into 5 geographic-genetic macro clusters corresponding to: the Italian peninsular & Sicily; Balkans & north-eastern Italy; Germany eastern; central Europe; and Iberian Peninsula. Central European population might have differentiated in the extra-Mediterranean Würm ice age refuge areas (Northern Alps, Carpathians, and the Bulgarian mountain systems), while the divergence among and within the southern European populations might have resulted by the Pleistocene bio geographical framework of Europe, with three southern refugia localized in the Balkans, Italian Peninsula and Iberia Peninsula. We further combined the use of most informative autosomal SNPs with uniparental markers (mtDNA and Y-linked) for accurately detecting parental genotypes and levels of introgressive hybridization between European wild and domestic cats. A total of 11 hybrids were identified. The presence of domestic mitochondrial haplotypes shared with some wild individuals led us to hypnotize the possibility that ancient introgressive events might have occurred and that further investigation should be recommended.