2 resultados para Laminaria japonica gametophytes
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Eukaryotic ribosomal DNA constitutes a multi gene family organized in a cluster called nucleolar organizer region (NOR); this region is composed usually by hundreds to thousands of tandemly repeated units. Ribosomal genes, being repeated sequences, evolve following the typical pattern of concerted evolution. The autonomous retroelement R2 inserts in the ribosomal gene 28S, leading to defective 28S rDNA genes. R2 element, being a retrotransposon, performs its activity in the genome multiplying its copy number through a “copy and paste” mechanism called target primed reverse transcription. It consists in the retrotranscription of the element’s mRNA into DNA, then the DNA is integrated in the target site. Since the retrotranscription can be interrupted, but the integration will be carried out anyway, truncated copies of the element will also be present in the genome. The study of these truncated variants is a tool to examine the activity of the element. R2 phylogeny appears, in general, not consistent with that of its hosts, except some cases (e.g. Drosophila spp. and Reticulitermes spp.); moreover R2 is absent in some species (Fugu rubripes, human, mouse, etc.), while other species have more R2 lineages in their genome (the turtle Mauremys reevesii, the Japanese beetle Popilia japonica, etc). R2 elements here presented are isolated in 4 species of notostracan branchiopods and in two species of stick insects, whose reproductive strategies range from strict gonochorism to unisexuality. From sequencing data emerges that in Triops cancriformis (Spanish gonochoric population), in Lepidurus arcticus (two putatively unisexual populations from Iceland) and in Bacillus rossius (gonochoric population from Capalbio) the R2 elements are complete and encode functional proteins, reflecting the general features of this family of transposable elements. On the other hand, R2 from Italian and Austrian populations of T. cancriformis (respectively unisexual and hermaphroditic), Lepidurus lubbocki (two elements within the same Italian population, gonochoric but with unfunctional males) and Bacillus grandii grandii (gonochoric population from Ponte Manghisi) have sequences that encode incomplete or non-functional proteins in which it is possible to recognize only part of the characteristic domains. In Lepidurus couesii (Italian gonochoric populations) different elements were found as in L. lubbocki, and the sequencing is still in progress. Two hypothesis are given to explain the inconsistency of R2/host phylogeny: vertical inheritance of the element followed by extinction/diversification or horizontal transmission. My data support previous study that state the vertical transmission as the most likely explanation; nevertheless horizontal transfer events can’t be excluded. I also studied the element’s activity in Spanish populations of T. cancriformis, in L. lubbocki, in L. arcticus and in gonochoric and parthenogenetic populations of B. rossius. In gonochoric populations of T. cancriformis and B. rossius I found that each individual has its own private set of truncated variants. The situation is the opposite for the remaining hermaphroditic/parthenogenetic species and populations, all individuals sharing – in the so far analyzed samples - the majority of variants. This situation is very interesting, because it isn’t concordant with the Muller’s ratchet theory that hypothesizes the parthenogenetic populations being either devoided of transposable elements or TEs overloaded. My data suggest a possible epigenetic mechanism that can block the retrotransposon activity, and in this way deleterious mutations don’t accumulate.
Resumo:
The main goal of the present thesis was to study some harmful algal species which cause blooms in Italian coastal waters, leading to consequences for human health, coastal ecosystem, fishery and tourism. In particular, in the first part of this thesis the toxicity of Adriatic strains of the raphidophyte Fibrocapsa japonica was investigated. Despite several hypotheses have been proposed for the toxic mechanism of the raphidophytes, especially for the species Chattonella antiqua and C. marina, which have been studied more extensively, just a few studies on the toxic effects of these species for different organisms were reported. Moreover, a careful reading of the literature evidenced as any ichthyotoxic events reported worldwide can be linked to F. japonica blooms. Although recently several studies were performed on F. japonica strains from the USA, Japan, Australia, New Zealand, the Netherlands, Germany, and France in order to characterize their growth and toxicity features, the work reported in this thesis results one of the first investigation on the toxic effects of F. japonica for different organisms, such as bacteria, crustaceans and fish. Mortality effects, together with haemolysis of fish erythrocytes, probably due to the relatively high amount of PUFAs produced by this species, were observed. Mortality for fish, however, was reported only at a high cell density and after a long exposition period (9-10 days); moreover a significant increase of H2O2 obtained in the tanks where sea basses were exposed to F. japonica was also relevant. This result may justify the absence of ichthyotoxic events in the Italian coasts, despite F. japonica blooms detected in these areas were characterized by high cell densities. This work reports also a first complete characterization of the fatty acids produced and extracellularly released by the Adriatic F. japonica, and results were also compared with the fatty acid profile of other strains. The absence of known brevetoxins in F. japonica algal extracts was also highlighted, leading to the hypothesis that the toxicity of F. japonica may be due to a synergic effect of PUFAs and ROS. Another microalgae that was studied in this thesis is the benthic dinoflagellate Ostreopsis cf. ovata. This species was investigated with the aim to investigate the effect of environmental parameters on its growth and toxicity. O. cf. ovata, in fact, shows different blooming periods along the Italian coasts and even the reported toxic effects are variable. The results of this work confirmed the high variability in the growth dynamic and toxin content of several Italian strains which were isolated in recent years along the Adriatic and Tyrrhenian Seas. Moreover, the effects of temperature and salinity on the behaviour of the different isolates are in good agreement with the results obtained from field surveys, which evidence as the environmental parameters are important factors modulating O. cf. ovata proliferation. Another relevant result that was highlighted is the anomaly in the production of palytoxin-like compounds reported by one of the studied isolate, in particular the one isolated in 2008 in Ancona (Adriatic Sea). Only this strain reported the absence of two (ovatoxin-b and –c) of the five ovatoxins so far known in the toxin profile and a different relative abundance of the other toxins. The last aspect that was studied in this thesis regards the toxin biosythesis. In fact, toxins produced (palytoxin-like compounds) or supposed to be produced (brevetoxin-like compounds) by O. cf. ovata and F. japonica, respectively, are polyketides, which are highly oxygenated compounds synthesized by complex enzymes known as polyketide synthase (PKS) enzymes. These enzymes are multi-domain complexes that structurally and functionally resemble the fatty acid synthases (FASs). This work reports the first study of PKS proteins in the dinoflagellates O. cf. ovata, C. monotis and in the raphidophyte F. japonica. For the first time some PKSs were identified in these species, confirming the presence of PKS proteins predicted by the in silico translation of the transcripts found in K. brevis also in other species. The identification of O. cf. ovata PKSs and the localization of the palytoxin-like compounds produced by this dinoflagellate in a similar location (chloroplast) as that observed for other dinoflagellate and cyanobacterial toxins provides some indication that these proteins may be involved in polyketide biosynthesis. However, their potential function as fatty acid synthases cannot be ruled out, as plant fatty acid synthesis also occurs within chloroplasts. This last hypothesis is also supported by the fact that in all the investigated species, and in particular in F. japonica, PKS proteins were present. Therefore, these results provide an important contribution to the study of the polyketides and of the involvement of PKS proteins in the toxin biosynthesis.