4 resultados para Lamellar zeolites

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycotoxins are contaminants of agricultural products both in the field and during storage and can enter the food chain through contaminated cereals and foods (milk, meat, and eggs) obtained from animals fed mycotoxin contaminated feeds. Mycotoxins are genotoxic carcinogens that cause health and economic problems. Ochratoxin A and fumonisin B1 have been classified by the International Agency for Research on Cancer in 1993, as “possibly carcinogenic to humans” (class 2B). To control mycotoxins induced damages, different strategies have been developed to reduce the growth of mycotoxigenic fungi as well as to decontaminate and/or detoxify mycotoxin contaminated foods and animal feeds. Critical points, target for these strategies, are: prevention of mycotoxin contamination, detoxification of mycotoxins already present in food and feed, inhibition of mycotoxin absorption in the gastrointestinal tract, reduce mycotoxin induced damages when absorption occurs. Decontamination processes, as indicate by FAO, needs the following requisites to reduce toxic and economic impact of mycotoxins: it must destroy, inactivate, or remove mycotoxins; it must not produce or leave toxic and/or carcinogenic/mutagenic residues in the final products or in food products obtained from animals fed decontaminated feed; it must be capable of destroying fungal spores and mycelium in order to avoiding mycotoxin formation under favorable conditions; it should not adversely affect desirable physical and sensory properties of the feedstuff; it has to be technically and economically feasible. One important approach to the prevention of mycotoxicosis in livestock is the addition in the diets of the non-nutritionally adsorbents that bind mycotoxins preventing the absorption in the gastrointestinal tract. Activated carbons, hydrated sodium calcium aluminosilicate (HSCAS), zeolites, bentonites, and certain clays, are the most studied adsorbent and they possess a high affinity for mycotoxins. In recent years, there has been increasing interest on the hypothesis that the absorption in consumed food can be inhibited by microorganisms in the gastrointestinal tract. Numerous investigators showed that some dairy strains of LAB and bifidobacteria were able to bind aflatoxins effectively. There is a strong need for prevention of the mycotoxin-induced damages once the toxin is ingested. Nutritional approaches, such as supplementation of nutrients, food components, or additives with protective effects against mycotoxin toxicity are assuming increasing interest. Since mycotoxins have been known to produce damages by increasing oxidative stress, the protective properties of antioxidant substances have been extensively investigated. Purpose of the present study was to investigate in vitro and in vivo, strategies to counteract mycotoxin threat particularly in swine husbandry. The Ussing chambers technique was applied in the present study that for the first time to investigate in vitro the permeability of OTA and FB1 through rat intestinal mucosa. Results showed that OTA and FB1 were not absorbed from rat small intestine mucosa. Since in vivo absorption of both mycotoxins normally occurs, it is evident that in these experimental conditions Ussing diffusion chambers were not able to assess the intestinal permeability of OTA and FB1. A large number of LAB strains isolated from feces and different gastrointestinal tract regions of pigs and poultry were screened for their ability to remove OTA, FB1, and DON from bacterial medium. Results of this in vitro study showed low efficacy of isolated LAB strains to reduce OTA, FB1, and DON from bacterial medium. An in vivo trial in rats was performed to evaluate the effects of in-feed supplementation of a LAB strain, Pediococcus pentosaceus FBB61, to counteract the toxic effects induced by exposure to OTA contaminated diets. The study allows to conclude that feed supplementation with P. pentosaceus FBB61 ameliorates the oxidative status in liver, and lowers OTA induced oxidative damage in liver and kidney if diet was contaminated by OTA. This P. pentosaceus FBB61 feature joined to its bactericidal activity against Gram positive bacteria and its ability to modulate gut microflora balance in pigs, encourage additional in vivo experiments in order to better understand the potential role of P. pentosaceus FBB61 as probiotic for farm animals and humans. In the present study, in vivo trial on weaned piglets fed FB1 allow to conclude that feeding of 7.32 ppm of FB1 for 6 weeks did not impair growth performance. Deoxynivalenol contamination of feeds was evaluated in an in vivo trial on weaned piglets. The comparison between growth parameters of piglets fed DON contaminated diet and contaminated diet supplemented with the commercial product did not reach the significance level but piglet growth performances were numerically improved when the commercial product was added to DON contaminated diet. Further studies are needed to improve knowledge on mycotoxins intestinal absorption, mechanism for their detoxification in feeds and foods, and nutritional strategies to reduce mycotoxins induced damages in animals and humans. The multifactorial approach acting on each of the various steps could be a promising strategy to counteract mycotoxins damages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supramolecular self-assembly represents a key technology for the spontaneous construction of nanoarchitectures and for the fabrication of materials with enhanced physical and chemical properties. In addition, a significant asset of supramolecular self-assemblies rests on their reversible formation, thanks to the kinetic lability of their non-covalent interactions. This dynamic nature can be exploited for the development of “self-healing” and “smart” materials towards the tuning of their functional properties upon various external factors. One particular intriguing objective in the field is to reach a high level of control over the shape and size of the supramolecular architectures, in order to produce well-defined functional nanostructures by rational design. In this direction, many investigations have been pursued toward the construction of self-assembled objects from numerous low-molecular weight scaffolds, for instance by exploiting multiple directional hydrogen-bonding interactions. In particular, nucleobases have been used as supramolecular synthons as a result of their efficiency to code for non-covalent interaction motifs. Among nucleobases, guanine represents the most versatile one, because of its different H-bond donor and acceptor sites which display self-complementary patterns of interactions. Interestingly, and depending on the environmental conditions, guanosine derivatives can form various types of structures. Most of the supramolecular architectures reported in this Thesis from guanosine derivatives require the presence of a cation which stabilizes, via dipole-ion interactions, the macrocyclic G-quartet that can, in turn, stack in columnar G-quadruplex arrangements. In addition, in absence of cations, guanosine can polymerize via hydrogen bonding to give a variety of supramolecular networks including linear ribbons. This complex supramolecular behavior confers to the guanine-guanine interactions their upper interest among all the homonucleobases studied. They have been subjected to intense investigations in various areas ranging from structural biology and medicinal chemistry – guanine-rich sequences are abundant in telomeric ends of chromosomes and promoter regions of DNA, and are capable of forming G-quartet based structures– to material science and nanotechnology. This Thesis, organized into five Chapters, describes mainly some recent advances in the form and function provided by self-assembly of guanine based systems. More generally, Chapter 4 will focus on the construction of supramolecular self-assemblies whose self-assembling process and self-assembled architectures can be controlled by light as external stimulus. Chapter 1 will describe some of the many recent studies of G-quartets in the general area of nanoscience. Natural G- quadruplexes can be useful motifs to build new structures and biomaterials such as self-assembled nanomachines, biosensors, therapeutic aptamer and catalysts. In Chapters 2-4 it is pointed out the core concept held in this PhD Thesis, i.e. the supramolecular organization of lipophilic guanosine derivatives with photo or chemical addressability. Chapter 2 will mainly focus on the use of cation-templated guanosine derivatives as a potential scaffold for designing functional materials with tailored physical properties, showing a new way to control the bottom-up realization of well-defined nanoarchitectures. In section 2.6.7, the self-assembly properties of compound 28a may be considered an example of open-shell moieties ordered by a supramolecular guanosine architecture showing a new (magnetic) property. Chapter 3 will report on ribbon-like structures, supramolecular architectures formed by guanosine derivatives that may be of interest for the fabrication of molecular nanowires within the framework of future molecular electronic applications. In section 3.4 we investigate the supramolecular polymerizations of derivatives dG 1 and G 30 by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties. Chapter 4 will describe photoresponsive self-assembling systems. Numerous research examples have demonstrated that the use of photochromic molecules in supramolecular self-assemblies is the most reasonable method to noninvasively manipulate their degree of aggregation and supramolecular architectures. In section 4.4 we report on the photocontrolled self-assembly of modified guanosine nucleobase E-42: by the introduction of a photoactive moiety at C8 it is possible to operate a photocontrol over the self-assembly of the molecule, where the existence of G-quartets can be alternately switched on and off. In section 4.5 we focus on the use of cyclodextrins as photoresponsive host-guest assemblies: αCD–azobenzene conjugates 47-48 (section 4.5.3) are synthesized in order to obtain a photoresponsive system exhibiting a fine photocontrollable degree of aggregation and self-assembled architecture. Finally, Chapter 5 contains the experimental protocols used for the research described in Chapters 2-4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane-based separation processes are acquiring, in the last years, an increasing importance because of their intrinsic energetic and environmental sustainability: some types of polymeric materials, showing adequate perm-selectivity features, appear rather suitable for these applications, because of their relatively low cost and easy processability. In this work have been studied two different types of polymeric membranes, in view of possible applications to the gas separation processes, i.e. Mixed Matrix Membranes (MMMs) and high free volume glassy polymers. Since the early 90’s, it has been understood that the performances of polymeric materials in the field of gas separations show an upper bound in terms of permeability and selectivity: in particular, an increase of permeability is often accompanied by a decrease of selectivity and vice-versa, while several inorganic materials, like zeolites or silica derivates, can overcome this limitation. As a consequence, it has been developed the idea of dispersing inorganic particles in polymeric matrices, in order to obtain membranes with improved perm-selectivity features. In particular, dispersing fumed silica nanoparticles in high free volume glassy polymers improves in all the cases gases and vapours permeability, while the selectivity may either increase or decrease, depending upon material and gas mixture: that effect is due to the capacity of nanoparticles to disrupt the local chain packing, increasing the dimensions of excess free volume elements trapped in the polymer matrix. In this work different kinds of MMMs were fabricated using amorphous Teflon® AF or PTMSP and fumed silica: in all the cases, a considerable increase of solubility, diffusivity and permeability of gases and vapours (n-alkanes, CO2, methanol) was observed, while the selectivity shows a non-monotonous trend with filler fraction. Moreover, the classical models for composites are not able to capture the increase of transport properties due to the silica addition, so it has been necessary to develop and validate an appropriate thermodynamic model that allows to predict correctly the mass transport features of MMMs. In this work, another material, called poly-trimethylsilyl-norbornene (PTMSN) was examined: it is a new generation high free volume glassy polymer that, like PTMSP, shows unusual high permeability and selectivity levels to the more condensable vapours. These two polymer differ each other because PTMSN shows a more pronounced chemical stability, due to its structure double-bond free. For this polymer, a set of Lattice Fluid parameters was estimated, making possible a comparison between experimental and theoretical solubility isotherms for hydrocarbons and alcoholic vapours: the successfully modelling task, based on application of NELF model, offers a reliable alternative to direct sorption measurement, which is extremely time-consuming due to the relevant relaxation phenomena showed by each sorption step. For this material also dilation experiments were performed, in order to quantify its dimensional stability in presence of large size, swelling vapours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to match the more stringent environmental regulations, heterogenization of traditional homogeneous processes is one of the main challenges of the modern chemical industry. Great results have been achieved in the fields of petrochemicals and base chemicals, whereas in fine chemical industry most of the synthetic procedures are based on multistep processes catalyzed by homogeneous catalysts mainly used in stoichiometric amounts. In the fine chemicals manufacture not so much efforts have been devoted to the investigation of suitable solid catalysts for the development of greener processes, then this sector represent a very attractive field of research. In this context, the present work deals with the extensive investigation of the possibility to heterogenize existing processes, in particular two different classes of reactions have been studied: alkylation of aromatic and heteroaromatic compounds and selective oxidation of aromatic alcohols. Traditional solid acid catalysts, such as zeolites, clays and alumina have been tested in the gas phase alkylation of 1,2-methylendioxybenzene, core building block of many drugs, pesticides and fragrances. The observed reactivity were clarified through a deep FTIR investigation complemented by ab initio calculation. The same catalysts were tested in the gas phase isopropylation of thiophene with the aim of clearly attribute the role of the reaction parameters in the reaction proceeding and verify the possibility to enhance the selectivity of one of the two possible isomers. Finally various Au/CeO2 catalysts were tested in the synthesis of benzaldehyde and piperonal, two aldehydes largely employed in the manufacture of fine chemical products, through liquid phase oxidation of the corresponding alcohols in very mild conditions.