4 resultados para LINEAR HEXAMERIC COMPLEX
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Nowadays robotic applications are widespread and most of the manipulation tasks are efficiently solved. However, Deformable-Objects (DOs) still represent a huge limitation for robots. The main difficulty in DOs manipulation is dealing with the shape and dynamics uncertainties, which prevents the use of model-based approaches (since they are excessively computationally complex) and makes sensory data difficult to interpret. This thesis reports the research activities aimed to address some applications in robotic manipulation and sensing of Deformable-Linear-Objects (DLOs), with particular focus to electric wires. In all the works, a significant effort was made in the study of an effective strategy for analyzing sensory signals with various machine learning algorithms. In the former part of the document, the main focus concerns the wire terminals, i.e. detection, grasping, and insertion. First, a pipeline that integrates vision and tactile sensing is developed, then further improvements are proposed for each module. A novel procedure is proposed to gather and label massive amounts of training images for object detection with minimal human intervention. Together with this strategy, we extend a generic object detector based on Convolutional-Neural-Networks for orientation prediction. The insertion task is also extended by developing a closed-loop control capable to guide the insertion of a longer and curved segment of wire through a hole, where the contact forces are estimated by means of a Recurrent-Neural-Network. In the latter part of the thesis, the interest shifts to the DLO shape. Robotic reshaping of a DLO is addressed by means of a sequence of pick-and-place primitives, while a decision making process driven by visual data learns the optimal grasping locations exploiting Deep Q-learning and finds the best releasing point. The success of the solution leverages on a reliable interpretation of the DLO shape. For this reason, further developments are made on the visual segmentation.
Linear and nonlinear thermal instability of Newtonian and non-Newtonian fluid saturated porous media
Resumo:
The present work aims to investigate the influence of different aspects, such as non-standard steady solutions, complex fluid rheologies and non-standard porous-channel geometries, on the stability of a Darcy-Bénard system. In order to do so, both linear and nonlinear stability theories are considered. A linear analysis focuses on studying the dynamics of the single disturbance wave present in the system, while its nonlinear counterpart takes into consideration the interactions among the single modes. The scope of the stability analysis is to obtain information regarding the transition from an equilibrium solution to another one, and also information regarding the transition nature and the emergent solution after the transition. The disturbance governing equations are solved analytically, whenever possible, and numerical by considering different approaches. Among other important results, it is found that a cylinder cross-section does not affect the thermal instability threshold, but just the linear pattern selection for dilatant and pseudoplastic fluid saturated porous media. A new rheological model is proposed as a solution for singular issues involving the power-law model. Also, a generalised class of one parameter basic solutions is proposed as an alternative description of the isoflux Darcy--Bénard problem. Its stability is investigated.
Diffusive models and chaos indicators for non-linear betatron motion in circular hadron accelerators
Resumo:
Understanding the complex dynamics of beam-halo formation and evolution in circular particle accelerators is crucial for the design of current and future rings, particularly those utilizing superconducting magnets such as the CERN Large Hadron Collider (LHC), its luminosity upgrade HL-LHC, and the proposed Future Circular Hadron Collider (FCC-hh). A recent diffusive framework, which describes the evolution of the beam distribution by means of a Fokker-Planck equation, with diffusion coefficient derived from the Nekhoroshev theorem, has been proposed to describe the long-term behaviour of beam dynamics and particle losses. In this thesis, we discuss the theoretical foundations of this framework, and propose the implementation of an original measurement protocol based on collimator scans in view of measuring the Nekhoroshev-like diffusive coefficient by means of beam loss data. The available LHC collimator scan data, unfortunately collected without the proposed measurement protocol, have been successfully analysed using the proposed framework. This approach is also applied to datasets from detailed measurements of the impact on the beam losses of so-called long-range beam-beam compensators also at the LHC. Furthermore, dynamic indicators have been studied as a tool for exploring the phase-space properties of realistic accelerator lattices in single-particle tracking simulations. By first examining the classification performance of known and new indicators in detecting the chaotic character of initial conditions for a modulated Hénon map and then applying this knowledge to study the properties of realistic accelerator lattices, we tried to identify a connection between the presence of chaotic regions in the phase space and Nekhoroshev-like diffusive behaviour, providing new tools to the accelerator physics community.
Resumo:
This dissertation adopts a multidisciplinary approach to investigate graphical and formal features of Cretan Hieroglyphic and Linear A. Drawing on theories which understand inscribed artefacts as an interplay of materials, iconography, and texts, I combine archaeological and philological considerations with statistical and experimental observations. The work is formulated on three key-questions. The first deals with the origins of Cretan Hieroglyphic. After providing a fresh view on Prepalatial seals chronology, I identify a number of forerunners of Hieroglyphic signs in iconographic motifs attested among the Prepalatial glyptic and material culture. I further identified a specific style-group, i.e., the ‘Border and Leaf Complex’, as the decisive step towards the emergence of the Hieroglyphic graphic repertoire. The second deals with the interweaving of formal, iconographical, and epigraphic features of Hieroglyphic seals with the sequences they bear and the contexts of their usage. By means of two Correspondence Analyses, I showed that the iconography on seals in some materials and shapes is closer to Cretan Hieroglyphics, than that on the other ones. Through two Social Network Analyses, I showed that Hieroglyphic impressions, especially at Knossos, follow a precise sealing pattern due to their shapes and sequences. Furthermore, prisms with a high number of inscribed faces adhere to formal features of jasper ones. Finally, through experimental engravings, I showed differences in cutting rates among materials, as well as the efficiency of abrasives and tools unearthed within the Quartier Mu. The third question concerns overlaps in chronology, findspots and signaries between Cretan Hieroglyphic and Linear A. I discussed all possible earliest instances of both scripts and argued for some items datable to the MM I-IIA period. I further provide an insight into the Hieroglyphic-Linear A dubitanda and criteria for their interpretation. Finally, I suggest four different patterns in the creation and diversification of the two signaries.