2 resultados para LIGHT-QUARK MASSES
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis comes after a strong contribution on the realization of the CMS computing system, which can be seen as a relevant part of the experiment itself. A physics analysis completes the road from Monte Carlo production and analysis tools realization to the final physics study which is the actual goal of the experiment. The topic of physics work of this thesis is the study of tt events fully hadronic decay in the CMS experiment. A multi-jet trigger has been provided to fix a reasonable starting point, reducing the multi-jet sample to the nominal trigger rate. An offline selection has been provided to reduce the S/B ratio. The b-tag is applied to provide a further S/B improvement. The selection is applied to the background sample and to the samples generated at different top quark masses. The top quark mass candidate is reconstructed for all those samples using a kinematic fitter. The resulting distributions are used to build p.d.f.’s, interpolating them with a continuous arbitrary curve. These curves are used to perform the top mass measurement through a likelihood comparison
Resumo:
In high-energy hadron collisions, the production at parton level of heavy-flavour quarks (charm and bottom) is described by perturbative Quantum Chromo-dynamics (pQCD) calculations, given the hard scale set by the quark masses. However, in hadron-hadron collisions, the predictions of the heavy-flavour hadrons eventually produced entail the knowledge of the parton distribution functions, as well as an accurate description of the hadronisation process. The latter is taken into account via the fragmentation functions measured at e$^+$e$^-$ colliders or in ep collisions, but several observations in LHC Run 1 and Run 2 data challenged this picture. In this dissertation, I studied the charm hadronisation in proton-proton collision at $\sqrt{s}$ = 13 TeV with the ALICE experiment at the LHC, making use of a large statistic data sample collected during LHC Run 2. The production of heavy-flavour in this collision system will be discussed, also describing various hadronisation models implemented in commonly used event generators, which try to reproduce experimental data, taking into account the unexpected results at LHC regarding the enhanced production of charmed baryons. The role of multiple parton interaction (MPI) will also be presented and how it affects the total charm production as a function of multiplicity. The ALICE apparatus will be described before moving to the experimental results, which are related to the measurement of relative production rates of the charm hadrons $\Sigma_c^{0,++}$ and $\Lambda_c^+$, which allow us to study the hadronisation mechanisms of charm quarks and to give constraints to different hadronisation models. Furthermore, the analysis of D mesons ($D^{0}$, $D^{+}$ and $D^{*+}$) as a function of charged-particle multiplicity and spherocity will be shown, investigating the role of multi-parton interactions. This research is relevant per se and for the mission of the ALICE experiment at the LHC, which is devoted to the study of Quark-Gluon Plasma.