3 resultados para Kleptoparasitic Spider

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Mastigusa Menge, 1854 includes small entelegyne spiders represented by extant and fossil species presenting characteristic features in male and female genitalia. The genus has a palearctic distribution, being present in Europe, North Africa, and the Near East, and shows ecological plasticity, with free-living, cave- dwelling and myrmecophile populations. The taxonomic history of the genus has been problematic, both regarding its phylogenetic placement and the delimitation of the species it includes. Three extant species are currently recognized, but the characters used to discriminate them have been inconsistent, leading to confusion about their identification and distribution. In the present thesis we addressed the taxonomic issues regarding Mastigusa by combining molecular and morphological data in an integrative taxonomy approach. For the first time, we included the genus in a molecular phylogenetic matrix solving a long going debate regarding its familiar placement, obtaining a well-supported placement in the family Cybaeidae. We used multi-locus molecular phylogenetic and DNA barcoding techniques as a starting point for identifying divergent lineages within the genus and revise the taxonomic status of the three known Mastigusa species, identifying a new species from the Iberian Peninsula, Algeria and the United Kingdom: M. raimondi sp. n. This taxonomic revision allowed a phylogeographic and ecological study of Mastigusa across its distribution range, carried out using phylogenetics and ecological niche modelling techniques, aiming at a comparison of the lifestyles and ecological requirements of the different species on a geographic scale. The Italian Alps were finally used as a testing ground for investigating the ecology and host preference of myrmecophile Mastigusa arietina populations living in association with ant species belonging to the Formica rufa species group. Spiders were found in association with five different Formica species, demonstrating little specificity and the tendency of associating with the locally present host species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three finfish species frequently caught in the waters of the Gulf of Manfredonia (Apulia, Italy) were studied in order to know how the flesh composition (proximate, fatty acid, macro- and micro- element contents) could be affected by the season effect. The species we examined were European hake (Merluccius merluccius), chub mackerel (Scomber japonicus) and horse mackerel (Trachurus trachurus), which were analysed at the raw state in three catch season and after cooking in two catch season. More precisely, European hake and chub mackerel caught during winter, summer and fall were analysed at the raw state. The composition of the flesh of grilled European hake and chub mackerel was study on fish caught in winter and fall. Horse mackerel of summer and winter catches were analysed both at the raw and grilled state. Furthermore, an overall sensory profile was outlined for each species in two catch season and the relevant spider web diagrams compared. On the whole, two hundred and eighty fish were analysed during this research project in order to obtain a nutritional profile of the three species. One hundred and fifty was the overall number of specimens used to create complete sensory profiles and compare them among the species. The three finfish species proved to be quite interesting for their proximate, fatty acids, macro- and micro-element contents. Nutritional and sensory changes occurred as seasons elapsed for chub and horse mackerel only. A high variability of flesh composition seemed to characterise these two species. European hake confirmed its mild sensory profile and good nutritional characteristics, which were not affected by any season effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic polymers constitute a wide class of materials which has enhanced the quality of human life, providing comforts and innovations. Anyway, the increasing production and the incorrect waste management, are leading to the occurrence of polymers in the environment, generating concern. To understand the extent of this issue, analytical investigation holds an essential position. Standardised methods have not established yet, and additional studies are required to improve the present knowledge. The main aim of this thesis was to provide comprehensive information about the potential of pyrolysis coupled with gas-chromatography and mass spectrometry (Py-GC-MS) for polymers investigation, from their characterisation to their identification and quantification in complex matrices. Water-soluble (poly(dimethylsiloxanes), PDMS bearing poly(ethylene glycol), PEG, side chains) and water-insoluble polymers (microplastics, MPs, and bioplastics) were studied. The different studies revealed the possibility to identify heterogeneous classes of polymers, fingerprinting the presence of PDMS copolymers and distinguishing chemically different polyurethanes (PURs). The occurrence of secondary reactions in pyrolysis of polymer mixtures was observed as possible drawback. Pyrolysis products indicative of secondary reactions and their reaction mechanisms were identified. Py-GC-MS also revealed its fundamental role for the identification of polymers composing commercial bioplastics items based. The results aided to identify chemicals that have the potential to migrate in sea waters. Investigations of environmental samples demonstrated the capability of Py-GC-MS to provide reliable, reproducible and comparable results about polymers in complex matrices (PEG-PDMS in sewage sludges and PURs and other MPs in road dusts and spider webs). Criticisms were especially found in quantitation, such as the retrieval reference materials, the construction of reliable calibration protocols and the occurrence of bias due to interferences between pyrolysis products. This thesis pursues the greater purpose to develop harmonised and standardised methods for environmental investigations of polymers, that is fundamental to assess the real state of the environment.