5 resultados para Kinetic Characterization

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA elongation is performed by Pol III α subunit in E. coli, stimulated by the association with ε and θ subunits. These three subunits define the DNA Pol III catalytic core. There is controversy about the DNA Pol III assembly for the simultaneous control of lagging and leading strands replication, since some Authors propose a dimeric model with two cores, whereas others have assembled in vitro a trimeric DNA Pol III with a third catalytic core, which increases the efficiency of DNA replication. Moreover, the function of the PHP domain, located at the N-terminus of α subunit, is still unknown. Previous studies hypothesized a possible pyrophosphatase activity, not confirmed yet. The present Thesis highlights by the first time the production in vivo of a trimeric E. coli DNA Pol III by co-expressing α, τ, ε and θ subunits. This trimeric complex has been enzymatically characterized and a molecular model has been proposed, with 2 α subunits sustaining the lagging-strand replication whereas the third core replicates the leading strand. In addition, the pyrophosphatase activity of the PHP domain has been confirmed. This activity involves, at least, the H12 and the D19 residues, whereas the D201 regulates phosphate release. On the other hand, an artificial polymerase (HoLaMa), designed by deleting the exonuclease domain of Klenow Fragment, has been expressed, purified and characterized for a better understanding of bacterial polymerases mechanism. The absence of exonuclease domain impaired enzyme processivity, since this domain is involved in DNA binding. Finally, Klenow enzyme, HoLaMa, α subunit and DNA Pol III αεθ have been characterized at the single-molecule level by FRET analysis, combining ALEX and TIRF microscopy. Fluorescently-labeled DNA molecules were immobilized, and changes in FRET efficiency enabled us to study polymerase binding and DNA polymerization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Group B Streptococcus (GBS) three structurally distinct types of pili have been discovered as potential virulence factors and vaccine candidates. The pilus-forming proteins are assembled into high-molecular weight polymers via a transpeptidation mechanism mediated by specific class C sortases. Using a multidisciplinary approach including bioinformatics, structural and biochemical studies and in vivo mutagenesis we performed a broad characterization of GBS sortase C. The high resolution X-ray structure of the enzymes revealed that the active site, located into the β-barrel core of the enzyme, is made of the catalytic triad His157-Cys219-Arg228 and covered by a loop, known as the “lid”. We show that the catalytic triad and the predicted N- and C-terminal trans-membrane regions are required for the enzyme activity. Interestingly, by in vivo complementation mutagenesis studies we found that the deletion of the entire lid loop or mutations in specific lid key residues had no effect on catalytic activity of the enzyme. In addition, kinetic characterizations of recombinant enzymes indicate that the lid mutants can still recognize and cleave the substrate-mimicking peptide at least as well as the wild type protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scope of this dissertation is to study the transport phenomena of small molecules in polymers and membranes for gas separation applications, with particular attention to energy efficiency and environmental sustainability. This work seeks to contribute to the development of new competitive selective materials through the characterization of novel organic polymers such as CANALs and ROMPs, as well as through the combination of selective materials obtaining mixed matrix membranes (MMMs), to make membrane technologies competitive with the traditional ones. Kinetic and thermodynamic aspects of the transport properties were investigated in ideal and non-ideal scenarios, such as mixed-gas experiments. The information we gathered contributed to the development of the fundamental understanding related to phenomenon like CO2-induced plasticization and physical aging. Among the most significant results, ZIF-8/PPO MMMs provided materials whose permeability and selectivity were higher than those of the pure materials for He/CO2 separation. The CANALs featured norbornyl benzocyclobutene backbone and thereby introduced a third typology of ladder polymers in the gas separation field, expanding the structural diversity of microporous materials. CANALs have a completely hydrocarbon-based and non-polar rigid backbone, which makes them an ideal model system to investigate structure-property correlations. ROMPs were synthesized by means of the ring opening metathesis living polymerization, which allowed the formation of bottlebrush polymers. CF3-ROMP reveled to be ultrapermeable to CO2, with unprecedented plasticization resistance properties. Mixed-gas experiments in glassy polymer showed that solubility-selectivity controls the separation efficiency of materials in multicomponent conditions. Finally, it was determined that plasticization pressure in not an intrinsic property of a material and does not represent a state of the system, but rather comes from the contribution of solubility coefficient and diffusivity coefficient in the framework of the solution-diffusion model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The urgent need for alternative solutions mitigating the impacts of human activities on the environment has strongly opened new challenges and opportunities in view of the energy transition. Indeed, the automotive industry is going through a revolutionary moment in its quest to reduce its carbon footprint, with biofuels being one of the viable alternatives. The use of different classes of biofuels as fuel additives/standalone components has attracted the attention of many researchers. Despite their beneficial effects, biofuel’s combustion can also result in the production of undesirable pollutants, requiring complete characterization of the phenomena occurring during their production and consumption. Industrial scale-up of biomass conversion is challenging owing to the complexity of its chemistry and transport phenomena involved in the process. In this view, the role of solid-phase and gas-phase chemistry is paramount. Thus, this study is devoted to detailed analysis of physical-chemical phenomena characterizing biomass pyrolysis and biofuel oxidation. The pyrolysis mechanism has been represented by 20 reactions whereas, the gas-phase kinetic models; manually upgraded model (KiBo_MU) and automated model (KiBo_AG), comprises 141 species and 453 reactions, and 631 species and 28329 reactions, respectively. The accuracy of the kinetic models was tested against experimental data and the models captured experimental trends very well. While the development and validation of detailed kinetic mechanisms is the main deliverable of this project, the realized procedure integrating schematic classifications with methodologies for the identification of common decomposition pathways and intermediates represents an additional source of novelty. Besides, the fundamentally oriented nature of the adopted method allows the identification of most relevant reactions and species under the operating conditions different industrial applications, paving the way for reduced kinetic mechanisms. Ultimately, the resulting detailed mechanisms can be used to integrate with more complex fluid dynamics model to accurately reproduce the behavior of real systems and reactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among all, the application of nanomaterials in biomedical research and most recently in the environmental one has opened the fields of nanomedicine and nanoremediation. Sensing methods based on fluorescence optical probe are generally requested for their selectivity, sensitivity. However, most imaging methods in literature rely on a fluorescent covalent labelling of the system. Therefore, the main aim of this project was to synthetise a biocompatible fluorogenic hyaluronan probe (HA) polymer functionalised with a rhomadine B (RB) moieties and study its behaviour as an optical probe with different materials with microscopy techniques. A derivatization of HA with RB (HA-RB) was successfully obtained providing a photophysical characterization showing a particular fluorescence mechanism of the probe. Firstly, we tested the interaction with different lab-grade micro and nanoplastics in water. Thanks to the peculiar photophysical behaviour of the probe nanoplastics can be detected with confocal microscopy and more interestingly their nature can be discriminated based on the fluorescence lifetime decay with FLIM microscopy. After, the interaction of a model plant derived metabolic enzyme GAPC1 undergoing oxidative-triggered aggregation was explored with the HA-RB. We highlighted the probe interaction with the protein even at early stage of the kinetic. Moreover, nanoparticle tracking analysis (NTA) experiment demonstrates that the probe is in fact able to interact with the small pre-aggregates in the early stage of the aggregation kinetic. Ultimately, we focused on the possibility to apply the probe in a super resolution microscopy technique, PALM, exploiting its aspecific interaction to characterize the surface topography of PTFE polydisperse microplastics. Optimal conditions were reached at high concentration of the probe (70 nM) where 0.5-5 nM is always advisable for this technique. Thanks to the polymeric nature and fluorescence mechanism of the probe, this technique was able to reveal features of PTFE surface under the diffraction limit (< 250 nm).