3 resultados para Kansainvälinen ilmastopaneeli IPCC
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The study of the impact of climate change on the environment has been based, until very recently, on an global approach, whose interest from a local point of view is very limited. This thesis, on the contrary, has treated the study of the impact of climate change in the Adriatic Sea basin following a twofold strategy of regionalization and integration of numerical models in order to reproduce the present and future scenarios of the system through a more and more realistic and solid approach. In particular the focus of the study was on the impact on the physical environment and on the sediment transport in the basin. This latter is a very new and original issue, to our knowledge still uninvestigated. The study case of the coastal area of Montenegro was particularly studied, since it is characterized by an important supply of sediment through the Buna/Bojana river, second most important in the Adriatic basin in terms of flow. To do this, a methodology to introduce the tidal processes in a baroclinic primitive equations Ocean General Circulation Model was applied and tidal processes were successfully reproduced in the Adriatic Sea, analyzing also the impacts they have on the mean general circulation, on salt and heat transport and on mixing and stratification of the water column in the different seasons of the year. The new hydrodynamical model has been further coupled with a wave model and with a river and sea sediment transport model, showing good results in the reproduction of sediment transport processes. Finally this complex coupled platform was integrated in the period 2001-2030 under the A1B scenario of IPCC, and the impact of climate change on the physical system and on sediment transport was preliminarily evaluated.
Resumo:
The aim of this PhD thesis, developed in the framework of the Italian Agroscenari research project, is to compare current irrigation volumes in two study area in Emilia-Romagna with the likely irrigation under climate change conditions. This comparison was carried out between the reference period 1961-1990, as defined by WMO, and the 2021-2050 period. For this period, multi-model climatic projections on the two study areas were available. So, the climatic projections were analyzed in term of their impact on irrigation demand and adaptation strategies for fruit and horticultural crops in the study area of Faenza, with a detailed analysis for kiwifruit vine, and for horticultural crops in Piacenza plan, focusing on the irrigation water needs of tomato. We produced downscaled climatic projections (based on A1B Ipcc emission scenario) for the two study areas. The climate change impacts for the period 2021-2050 on crop irrigation water needs and other agrometeorological index were assessed by means of the Criteria water balance model, in the two versions available, Criteria BdP (local) and Geo (spatial) with different levels of detail. We found in general for both the areas an irrigation demand increase of about +10% comparing the 2021-2050 period with the reference years 1961-1990, but no substantial differences with more recent years (1991-2008), mainly due to a projected increase in spring precipitation compensating the projected higher summer temperature and evapotranspiration. As a consequence, it is not forecasted a dramatic increase in the irrigation volumes with respect to the current volumes.
Resumo:
Sea-level variability is characterized by multiple interacting factors described in the Fourth Assessment Report (Bindoff et al., 2007) of the Intergovernmental Panel on Climate Change (IPCC) that act over wide spectra of temporal and spatial scales. In Church et al. (2010) sea-level variability and changes are defined as manifestations of climate variability and change. The European Environmental Agency (EEA) defines sea level as one of most important indicators for monitoring climate change, as it integrates the response of different components of the Earths system and is also affected by anthropogenic contributions (EEA, 2011). The balance between the different sea-level contributions represents an important source of uncertainty, involving stochastic processes that are very difficult to describe and understand in detail, to the point that they are defined as an enigma in Munk (2002). Sea-level rate estimates are affected by all these uncertainties, in particular if we look at possible responses to sea-level contributions to future climate. At the regional scale, lateral fluxes also contribute to sea-level variability, adding complexity to sea-level dynamics. The research strategy adopted in this work to approach such an interesting and challenging topic has been to develop an objective methodology to study sea-level variability at different temporal and spatial scales, applicable in each part of the Mediterranean basin in particular, and in the global ocean in general, using all the best calibrated sources of data (for the Mediterranean): in-situ, remote-sensig and numerical models data. The global objective of this work was to achieve a deep understanding of all of the components of the sea-level signal contributing to sea-level variability, tendency and trend and to quantify them.