5 resultados para Johnson kernel
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements.
Resumo:
The aim of this proposal is to explain the paradigm of the American foreign policy during the Johnson Administration, especially toward Europe, within the NATO framework, and toward URSS, in the context of the détente, just emerged during the decade of the sixties. During that period, after the passing of the J. F. Kennedy, President L. B. Johnson inherited a complex and very high-powered world politics, which wanted to get a new phase off the ground in the transatlantic relations and share the burden of the Cold war with a refractory Europe. Known as the grand design, it was a policy that needed the support of the allies and a clear purpose which appealed to the Europeans. At first, President Johnson detected in the problem of the nuclear sharing the good deal to make with the NATO allies. At the same time, he understood that the United States needed to reassert their leadeship within the new stage of relations with the Soviet Union. Soon, the “transatlantic bargain” became something not so easy to dealt with. The Federal Germany wanted to say a word in the nuclear affairs and, why not, put the finger on the trigger of the atlantic nuclear weapons. URSS, on the other hand, wanted to keep Germany down. The other allies did not want to share the onus of the defense of Europe, at most the responsability for the use of the weapons and, at least, to participate in the decision-making process. France, which wanted to detach herself from the policy of the United States and regained a world role, added difficulties to the manage of this course of action. Through the years of the Johnson’s office, the divergences of the policies placed by his advisers to gain the goal put the American foreign policy in deep water. The withdrawal of France from the organization but not from the Alliance, give Washington a chance to carry out his goal. The development of a clear-cut disarm policy leaded the Johnson’s administration to the core of the matter. The Non-proliferation Treaty signed in 1968, solved in a business-like fashion the problem with the allies. The question of nuclear sharing faded away with the acceptance of more deep consultative role in the nuclear affairs by the allies, the burden for the defense of Europe became more bearable through the offset agreement with the FRG and a new doctrine, the flexible response, put an end, at least formally, to the taboo of the nuclear age. The Johnson’s grand design proved to be different from the Kennedy’s one, but all things considered, it was more workable. The unpredictable result was a real détente with the Soviet Union, which, we can say, was a merit of President Johnson.
Resumo:
La tesi analizza una parte della politica estera dell’amministrazione Johnson, e più specificamente l’avvio del dialogo con l’Urss in materia di non proliferazione e controllo degli armamenti e la revisione della China policy, inquadrando entrambe nell’adattamento della cold war strategy all’evoluzione sistema internazionale, argomentando che la distensione intesa come rilassamento delle tensioni e ricerca di terreno comune per il dialogo, fosse perlomeno uno degli strumenti politici che l’amministrazione scelse di usare. Il primo capitolo analizza i cambiamenti che interessarono il Blocco sovietico e il movimento comunista internazionale tra la fine degli anni Cinquanta e l’inizio degli anni Sessanta, soprattutto la rottura dell’alleanza sino-sovietica, e l’impatto che essi ebbero sul sistema bipolare su cui si basava la Guerra Fredda. Il capitolo secondo affronta più specificamente l’evoluzione delle relazioni tra Stati Uniti e Unione Sovietica, il perseguimento di una politica di distensione, dopo la crisi dei missili cubani, e in che relazione si trovasse ciò con lo status della leadership sovietica a seguito dei cambiamenti che avevano avuto luogo. Soffermandosi sulla questione del controllo degli armamenti e sul percorso che portò alla firma del Trattato di Non-proliferazione, si analizza come la nuova rotta intrapresa col dialogo sulle questioni strategiche sia stato anche un cambiamento di rotta in generale nella concezione della Guerra Fredda e l’introduzione della distensione come strumento politico. Il terzo capitolo affronta la questione della modifica della politica verso Pechino e il processo tortuoso e contorto attraverso cui l’amministrazione Johnson giunse a distaccarsi dalla China policy seguita sino ad allora.
Resumo:
The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.
Resumo:
The first part of this work deals with the inverse problem solution in the X-ray spectroscopy field. An original strategy to solve the inverse problem by using the maximum entropy principle is illustrated. It is built the code UMESTRAT, to apply the described strategy in a semiautomatic way. The application of UMESTRAT is shown with a computational example. The second part of this work deals with the improvement of the X-ray Boltzmann model, by studying two radiative interactions neglected in the current photon models. Firstly it is studied the characteristic line emission due to Compton ionization. It is developed a strategy that allows the evaluation of this contribution for the shells K, L and M of all elements with Z from 11 to 92. It is evaluated the single shell Compton/photoelectric ratio as a function of the primary photon energy. It is derived the energy values at which the Compton interaction becomes the prevailing process to produce ionization for the considered shells. Finally it is introduced a new kernel for the XRF from Compton ionization. In a second place it is characterized the bremsstrahlung radiative contribution due the secondary electrons. The bremsstrahlung radiation is characterized in terms of space, angle and energy, for all elements whit Z=1-92 in the energy range 1–150 keV by using the Monte Carlo code PENELOPE. It is demonstrated that bremsstrahlung radiative contribution can be well approximated with an isotropic point photon source. It is created a data library comprising the energetic distributions of bremsstrahlung. It is developed a new bremsstrahlung kernel which allows the introduction of this contribution in the modified Boltzmann equation. An example of application to the simulation of a synchrotron experiment is shown.