4 resultados para Johnson, Mark: Philosophy in the flesh
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Values are beliefs or principles that are deemed significant or desirable within a specific society or culture, serving as the fundamental underpinnings for ethical and socio-behavioral norms. The objective of this research is to explore the domain encompassing moral, cultural, and individual values. To achieve this, we employ an ontological approach to formally represent the semantic relations within the value domain. The theoretical framework employed adopts Fillmore’s frame semantics, treating values as semantic frames. A value situation is thus characterized by the co-occurrence of specific semantic roles fulfilled within a given event or circumstance. Given the intricate semantics of values as abstract entities with high social capital, our investigation extends to two interconnected domains. The first domain is embodied cognition, specifically image schemas, which are cognitive patterns derived from sensorimotor experiences that shape our conceptualization of entities in the world. The second domain pertains to emotions, which are inherently intertwined with the realm of values. Consequently, our approach endeavors to formalize the semantics of values within an embodied cognition framework, recognizing values as emotional-laden semantic frames. The primary ontologies proposed in this work are: (i) ValueNet, an ontology network dedicated to the domain of values; (ii) ISAAC, the Image Schema Abstraction And Cognition ontology; and (iii) EmoNet, an ontology for theories of emotions. The knowledge formalization adheres to established modeling practices, including the reuse of semantic web resources such as WordNet, VerbNet, FrameNet, DBpedia, and alignment to foundational ontologies like DOLCE, as well as the utilization of Ontology Design Patterns. These ontological resources are operationalized through the development of a fully explainable frame-based detector capable of identifying values, emotions, and image schemas generating knowledge graphs from from natural language, leveraging the semantic dependencies of a sentence, and allowing non trivial higher layer knowledge inferences.
Resumo:
In the literature on philosophical practices, despite the crucial role that argumentation plays in these activities, no specific argumentative theories have ever been proposed to assist the figure of the facilitator in conducting philosophical dialogue and to enhance student’s critical thinking skills. The dissertation starts from a cognitive perspective that challenges the classic Cartesian notion of rationality by focusing on limits and biases of human reasoning. An argumentative model (WRAT – Weak Reasoning Argumentative Theory) is then outlined in order to respond to the needs of philosophical dialogue. After justifying the claim that this learning activity, among other inductive methodologies, is the most suitable for critical thinking education, I inquired into the specific goal of ‘arguing’ within this context by means of the tools provided by Speech Act Theory: the speaker’s intention is to construct new knowledge by questioning her own and other’s beliefs. The model proposed has been theorized on this assumption, starting from which the goals, and, in turn, the related norms, have been pinpointed. In order to include all the epistemic attitudes required to accomplish the complex task of arguing in philosophical dialogue, I needed to integrate two opposed cognitive accounts, Dual Process Theory and Evolutionary Approach, that, although they provide incompatible descriptions of reasoning, can be integrated to provide a normative account of argumentation. The model, apart from offering a theoretical contribution to argumentation studies, is designed to be applied to the Italian educational system, in particular to classes in technical and professional high schools belonging to the newly created network Inventio. This initiative is one of the outcomes of the research project by the same name, which also includes an original Syllabus, research seminars, a monitoring action and publications focused on introducing philosophy, in the form of workshop activities, into technical and professional schools.
Resumo:
The Ǧābirian corpus was a receiver of ancient Greek ideas and, at the same time, a source of knowledge for the later Greek-speaking world, in particular for medieval Byzantine alchemy. Both aspects are explored in the dissertation with respect to the notion of nature. After a general introduction to the Corpus and the sciences described in it, particular attention is devoted to a Byzantine anonymous text, The Work of Four Elements, which was probably influenced by the Ǧābirian Books of Seventy. These texts exemplify how, in the theory of the Ǧābirian science, things are constructed from four natures (hot, cold, moist and dry), the balance of which defines what a thing is. By changing the balance of natures, one can transmute any metals into gold that is perfectly proportioned in terms of natures. Ǧābir presents the art of dyeing metals gold in the Books of Seven Metals which, along with chrysopoetic recipes, also include medical recipes and theoretical contents such as the theories of four humours, properties, and talismans. Moreover, Ǧābir postulated a substrate that does not change in itself and continues to exist when natures move in and out of things. Such primary existence is called the fifth nature as an additional principle to the four natures. This key concept for the Ǧābirian theory, which has been underexplored so far, is discussed through the textual and critical analysis of various unedited sources: the Books of Seven Metals and the Book of the Fifth Nature. This study confirms that the fifth nature was probably derived from ancient Greek philosophical concepts such as the Empedoclean particles, the Aristotelian fifth element and the Stoic pneuma. Thus, this research indicates the importance of the Ǧābirian corpus both in the history of alchemy and the history of philosophy.
Resumo:
In the post genomic era with the massive production of biological data the understanding of factors affecting protein stability is one of the most important and challenging tasks for highlighting the role of mutations in relation to human maladies. The problem is at the basis of what is referred to as molecular medicine with the underlying idea that pathologies can be detailed at a molecular level. To this purpose scientific efforts focus on characterising mutations that hamper protein functions and by these affect biological processes at the basis of cell physiology. New techniques have been developed with the aim of detailing single nucleotide polymorphisms (SNPs) at large in all the human chromosomes and by this information in specific databases are exponentially increasing. Eventually mutations that can be found at the DNA level, when occurring in transcribed regions may then lead to mutated proteins and this can be a serious medical problem, largely affecting the phenotype. Bioinformatics tools are urgently needed to cope with the flood of genomic data stored in database and in order to analyse the role of SNPs at the protein level. In principle several experimental and theoretical observations are suggesting that protein stability in the solvent-protein space is responsible of the correct protein functioning. Then mutations that are found disease related during DNA analysis are often assumed to perturb protein stability as well. However so far no extensive analysis at the proteome level has investigated whether this is the case. Also computationally methods have been developed to infer whether a mutation is disease related and independently whether it affects protein stability. Therefore whether the perturbation of protein stability is related to what it is routinely referred to as a disease is still a big question mark. In this work we have tried for the first time to explore the relation among mutations at the protein level and their relevance to diseases with a large-scale computational study of the data from different databases. To this aim in the first part of the thesis for each mutation type we have derived two probabilistic indices (for 141 out of 150 possible SNPs): the perturbing index (Pp), which indicates the probability that a given mutation effects protein stability considering all the “in vitro” thermodynamic data available and the disease index (Pd), which indicates the probability of a mutation to be disease related, given all the mutations that have been clinically associated so far. We find with a robust statistics that the two indexes correlate with the exception of all the mutations that are somatic cancer related. By this each mutation of the 150 can be coded by two values that allow a direct comparison with data base information. Furthermore we also implement computational methods that starting from the protein structure is suited to predict the effect of a mutation on protein stability and find that overpasses a set of other predictors performing the same task. The predictor is based on support vector machines and takes as input protein tertiary structures. We show that the predicted data well correlate with the data from the databases. All our efforts therefore add to the SNP annotation process and more importantly found the relationship among protein stability perturbation and the human variome leading to the diseasome.