2 resultados para Isothermal Titration

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autism Spectrum Disorder (ASD) is a range of early-onset conditions classified as neurodevelopmental disorders, characterized by deficits in social interactions and communication, as well as by restricted interest and repetitive behaviors. Among the proteins associated with this spectrum of disease there are Caspr2, α-NRXN1, NLGN1-4. Caspr2 is involved in the clustering of K+ channels at the juxtaparanodes, where it is proposed to bind TAG-1. Recent works reported a synaptic localization of Caspr2, but little is know on its role in this compartment. NRXNs and their ligand NLGNs, instead, have a well-defined role in the formation and maintenance of synapses. Among the neuroligins, NLGN2 binds NRXNs with the lowest affinity, suggesting that it could have other not yet characterized ligands. The aim of this work was to better characterize the binding of Caspr2 to TAG-1 and to identify new potential binding partner for Caspr2 and NLGN2. Unexpectedly, using Isothermal Titration Calorimetry and co-immunoprecipitation experiments the direct association of the first two proteins could not be verified and the results indicate that the first evidences reporting it were biased by false-positive artifacts. These findings, together with the uncharacterized synaptic localization of Caspr2, made the identification of new potential binding partners for this protein necessary. To find new proteins that associate with Caspr2 and NLGN2, affinity chromatography in tandem with mass spectrometry experiments were performed. Interestingly, about 25 new potential partners were found for these two proteins and NLGN1, that was originally included as a control: 5 of those, namely SFRP1, CLU, APOE, CNTN1 and TNR, were selected for further investigations. Only the association of CLU to NLGN2 was confirmed. In the future, screenings of the remaining candidates have to be carried out and the functional role for the proposed NLGN2-CLU complex has to be studied.