9 resultados para Irreversible structural changes
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Ion channels are protein molecules, embedded in the lipid bilayer of the cell membranes. They act as powerful sensing elements switching chemicalphysical stimuli into ion-fluxes. At a glance, ion channels are water-filled pores, which can open and close in response to different stimuli (gating), and one once open select the permeating ion species (selectivity). They play a crucial role in several physiological functions, like nerve transmission, muscular contraction, and secretion. Besides, ion channels can be used in technological applications for different purpose (sensing of organic molecules, DNA sequencing). As a result, there is remarkable interest in understanding the molecular determinants of the channel functioning. Nowadays, both the functional and the structural characteristics of ion channels can be experimentally solved. The purpose of this thesis was to investigate the structure-function relation in ion channels, by computational techniques. Most of the analyses focused on the mechanisms of ion conduction, and the numerical methodologies to compute the channel conductance. The standard techniques for atomistic simulation of complex molecular systems (Molecular Dynamics) cannot be routinely used to calculate ion fluxes in membrane channels, because of the high computational resources needed. The main step forward of the PhD research activity was the development of a computational algorithm for the calculation of ion fluxes in protein channels. The algorithm - based on the electrodiffusion theory - is computational inexpensive, and was used for an extensive analysis on the molecular determinants of the channel conductance. The first record of ion-fluxes through a single protein channel dates back to 1976, and since then measuring the single channel conductance has become a standard experimental procedure. Chapter 1 introduces ion channels, and the experimental techniques used to measure the channel currents. The abundance of functional data (channel currents) does not match with an equal abundance of structural data. The bacterial potassium channel KcsA was the first selective ion channels to be experimentally solved (1998), and after KcsA the structures of four different potassium channels were revealed. These experimental data inspired a new era in ion channel modeling. Once the atomic structures of channels are known, it is possible to define mathematical models based on physical descriptions of the molecular systems. These physically based models can provide an atomic description of ion channel functioning, and predict the effect of structural changes. Chapter 2 introduces the computation methods used throughout the thesis to model ion channels functioning at the atomic level. In Chapter 3 and Chapter 4 the ion conduction through potassium channels is analyzed, by an approach based on the Poisson-Nernst-Planck electrodiffusion theory. In the electrodiffusion theory ion conduction is modeled by the drift-diffusion equations, thus describing the ion distributions by continuum functions. The numerical solver of the Poisson- Nernst-Planck equations was tested in the KcsA potassium channel (Chapter 3), and then used to analyze how the atomic structure of the intracellular vestibule of potassium channels affects the conductance (Chapter 4). As a major result, a correlation between the channel conductance and the potassium concentration in the intracellular vestibule emerged. The atomic structure of the channel modulates the potassium concentration in the vestibule, thus its conductance. This mechanism explains the phenotype of the BK potassium channels, a sub-family of potassium channels with high single channel conductance. The functional role of the intracellular vestibule is also the subject of Chapter 5, where the affinity of the potassium channels hEag1 (involved in tumour-cell proliferation) and hErg (important in the cardiac cycle) for several pharmaceutical drugs was compared. Both experimental measurements and molecular modeling were used in order to identify differences in the blocking mechanism of the two channels, which could be exploited in the synthesis of selective blockers. The experimental data pointed out the different role of residue mutations in the blockage of hEag1 and hErg, and the molecular modeling provided a possible explanation based on different binding sites in the intracellular vestibule. Modeling ion channels at the molecular levels relates the functioning of a channel to its atomic structure (Chapters 3-5), and can also be useful to predict the structure of ion channels (Chapter 6-7). In Chapter 6 the structure of the KcsA potassium channel depleted from potassium ions is analyzed by molecular dynamics simulations. Recently, a surprisingly high osmotic permeability of the KcsA channel was experimentally measured. All the available crystallographic structure of KcsA refers to a channel occupied by potassium ions. To conduct water molecules potassium ions must be expelled from KcsA. The structure of the potassium-depleted KcsA channel and the mechanism of water permeation are still unknown, and have been investigated by numerical simulations. Molecular dynamics of KcsA identified a possible atomic structure of the potassium-depleted KcsA channel, and a mechanism for water permeation. The depletion from potassium ions is an extreme situation for potassium channels, unlikely in physiological conditions. However, the simulation of such an extreme condition could help to identify the structural conformations, so the functional states, accessible to potassium ion channels. The last chapter of the thesis deals with the atomic structure of the !- Hemolysin channel. !-Hemolysin is the major determinant of the Staphylococcus Aureus toxicity, and is also the prototype channel for a possible usage in technological applications. The atomic structure of !- Hemolysin was revealed by X-Ray crystallography, but several experimental evidences suggest the presence of an alternative atomic structure. This alternative structure was predicted, combining experimental measurements of single channel currents and numerical simulations. This thesis is organized in two parts, in the first part an overview on ion channels and on the numerical methods adopted throughout the thesis is provided, while the second part describes the research projects tackled in the course of the PhD programme. The aim of the research activity was to relate the functional characteristics of ion channels to their atomic structure. In presenting the different research projects, the role of numerical simulations to analyze the structure-function relation in ion channels is highlighted.
Resumo:
This thesis is a part of a larger study about the characterization of mechanical and histomorphometrical properties of bone. The main objects of this study were the bone tissue properties and its resistance to mechanical loads. Moreover, the knowledge about the equipment selected to carry out the analyses, the micro-computed tomography (micro-CT), was improved. Particular attention was given to the reliability over time of the measuring instrument. In order to understand the main characteristics of bone mechanical properties a study of the skeletal, the bones of which it is composed and biological principles that drive their formation and remodelling, was necessary. This study has led to the definition of two macro-classes describing the main components responsible for the resistance to fracture of bone: quantity and quality of bone. The study of bone quantity is the current clinical standard measure for so-called bone densitometry, and research studies have amply demonstrated that the amount of tissue is correlated with its mechanical properties of elasticity and fracture. However, the models presented in the literature, including information on the mere quantity of tissue, have often been limited in describing the mechanical behaviour. Recent investigations have underlined that also the bone-structure and the tissue-mineralization play an important role in the mechanical characterization of bone tissue. For this reason in this thesis the class defined as bone quality was mainly studied, splitting it into two sub-classes of bone structure and tissue quality. A study on bone structure was designed to identify which structural parameters, among the several presented in the literature, could be integrated with the information about quantity, in order to better describe the mechanical properties of bone. In this way, it was also possible to analyse the iteration between structure and function. It has been known for long that bone tissue is capable of remodeling and changing its internal structure according to loads, but the dynamics of these changes are still being analysed. This part of the study was aimed to identify the parameters that could quantify the structural changes of bone tissue during the development of a given disease: osteoarthritis. A study on tissue quality would have to be divided into different classes, which would require a scale of analysis not suitable for the micro-CT. For this reason the study was focused only on the mineralization of the tissue, highlighting the difference between bone density and tissue density, working in a context where there is still an ongoing scientific debate.
Resumo:
Much effort has been devoted in the recent years to the investigation of optically active polythiophenes characterized by the presence of a chiral moiety linked to the 3-position of the aromatic ring. In addition to their potential technological applications as materials for enantioselective electrodes and membranes, chiral poly(thiophene)s offer the possibility of studying the structural changes accompanying the transition from the disordered state by following the variation of their chiroptical properties by circular dichroism (CD). In solution of a good solvent, that kind of polythiophenes doesn’t display any optical activity arising from the presence of dissymmetric conformation of the backbone, as shown by circular dichroism (CD) spectra. When the macromolecules begin to aggregate, as it occurs e.g. by addition of a poor solvent, or lowering the solution temperature, or when the macromolecules are assembled in the solid state as thin films obtained by solution casting or spin coating, significant CD bands are observed in the spectral region related to the electronic absorptions of the aromatic polythiophene chromophore. These CD bands are indicative of a chiral macromolecule arrangement of one prevailing chirality. The synthesis of -substituted polythiophenes can be carried out starting from the corresponding -substituted mono- or oligomeric thiophenic monomers under regioselective or regiospecific conditions in order to minimize or avoid the formation of head-to-head dyads unfavourably affecting the presence of coplanar conformations of thiophene rings as a consequence of steric interactions between the side-chain substituents, both in solution and in the solid state. To this regard, non-symmetrically substituted monomers require therefore to perform the polymerization in the presence of highly demanding catalysts and reaction condition, whereas with symmetrically substituted oligothiophenic monomers containing the -substituents located far apart from the reacting sites, it is instead possible to obtain regioregular macromolecules by adopting more simple and economic polymerization methods, such as, e. g., the chemical oxidative polymerization with iron (III) trichloride. In order to verify how the polymer structure affects its optical activity, further poly-3-alkylthiophenes, substituted by an enantiomerically pure chiral alkyl group, namely poli[3,3”-di[2((S)-(+)-2-methylbutoxy)ethyl]-2,2’:5’,2”-terthiophene] (PDMBOETT), poli[3,3’di[2((S)-(+)-2-methylbutoxy)ethyl]-2,2’-bitiofene] (PDMBOEBT), poli[3,3””-didodecyl-4’,3”’-di(S)-(+)-2-methylbutyl-2,2’:5’,2”:5”,2”’:5”’,2””-quinquethiophene (PDDDMBQT) have been synthesized and characterized by instrumental techniques. The spectroscopic behaviour of thin films of poly(DDDMBQT) has been investigated in the solid state under different sample preparation procedures. It was also compared with the behaviour of polymers previously made. The experimental results are interpreted in terms of influence of the side-chain substituents on the extent of planarity of the polymeric chains and the formation of optically active chiral aggregates. In recent years conjugated block copolymers have received considerable attention. It is well known that conjugated block copolymers composed of two electronically different blocks can have morphologic and optical properties, that differ from those of their homopolymers. A recent study has also shown that the electronic properties and the supramolecular organization of one conjugated block can also be influenced by the other block. In order to study better this behavior, a new conjugated block copolymers, composed of a regioregular hydrophylic block and a regioregular hydrophobic block namely poli[3[2-(2-metossietossi)etossi]metiltiofene]-co- poli[3(1-octilossi)tiofene], has been synthesized and characterized.
Dall'involucro all'invaso. Lo spazio a pianta centrale nell'opera architettonica di Adalberto Libera
Resumo:
An archetype selected over the centuries Adalberto Libera wrote little, showing more inclination to use the project as the only means of verification. This study uses a survey of the project for purely compositional space in relation to the reason that most other returns with continuity and consistency throughout his work. "The fruit of a type selected over centuries", in the words of Libera, is one of the most widely used and repeated spatial archetypes present in the history of architecture, given its nature as defined by a few consolidated elements and precisely defined with characters of geometric precision and absoluteness, the central space is provided, over the course of evolution of architecture, and its construction aspects as well as symbolic, for various uses, from historical period in which it was to coincide with sacred space for excellence, to others in which it lends itself to many different expressive possibilities of a more "secular". The central space was created on assumptions of a constructive character, and the same exact reason has determined the structural changes over the centuries, calling from time to time with advances in technology, the maximum extent possible and the different applications, which almost always have coincided with the reason for the monumental space. But it’s in the Roman world that the reason for the central space is defined from the start of a series of achievements that fix the character in perpetuity. The Pantheon was seen maximum results and, simultaneously, the archetype indispensable, to the point that it becomes difficult to sustain a discussion of the central space that excludes. But the reason the space station has complied, in ancient Rome, just as exemplary, monuments, public spaces or buildings with very different implications. The same Renaissance, on which Wittkower's proving itself once and for all, the nature and interpretation of sacred space station, and thus the symbolic significance of that invaded underlying interpretations related to Humanism, fixing the space-themed drawing it with the study and direct observation by the four-sixteenth-century masters, the ruins that in those years of renewed interest in the classical world, the first big pieces of excavation of ancient Rome brought to light with great surprise of all. Not a case, the choice to investigate the architectural work of Libera through the grounds of the central space. Investigating its projects and achievements, it turns out as the reason invoked particularly evident from the earliest to latest work, crossing-free period of the war which for many authors in different ways, the distinction between one stage and another, or the final miss. The theme and the occasion for Libera always distinct, it is precisely the key through which to investigate her work, to come to discover that the first-in this case the central plan-is the constant underlying all his work, and the second reason that the quota with or at the same time, we will return different each time and always the same Libera, formed on the major works remained from ancient times, and on this building method, means consciously, that the characters of architectural works, if valid, pass the time, and survive the use and function contingent. As for the facts by which to formalize it, they themselves are purely contingent, and therefore available to be transferred from one work to another, from one project to another, using also the loan. Using the same two words-at-issue and it becomes clear now how the theme of this study is the method of Libera and opportunity to the study of the central space in his work. But there is one aspect that, with respect to space a central plan evolves with the progress of the work of Libera on the archetype, and it is the reason behind all the way, just because an area built entirely on reason centric. It 'just the "center" of space that, ultimately, tells us the real progression and the knowledge that over the years has matured and changed in Libera. In the first phase, heavily laden with symbolic superstructure, even if used in a "bribe" from Free-always ill-disposed to sacrifice the idea of architecture to a phantom-center space is just the figure that identifies the icon represents space itself: the cross, the flame or the statue are different representations of the same idea of center built around an icon. The second part of the work of clearing the space station, changed the size of the orders but the demands of patronage, grows and expands the image space centric, celebratory nature that takes and becomes, in a different way, this same symbol . You see, one in all, as the project of "Civiltà Italiana" or symbolic arch are examples of this different attitude. And at the same point of view, you will understand how the two projects formulated on the reuse of the Mausoleum of Augustus is the key to its passage from first to second phase: the Ara Pacis in the second project, making itself the center of the composition "breaks" the pattern of symbolic figure in the center, because it is itself an architecture. And, in doing so, the transition takes place where the building itself-the central space-to become the center of that space that itself creates and determines, by extending the potential and the expressiveness of the enclosure (or cover) that defines the basin centered. In this second series of projects, which will be the apex and the point of "crisis" in the Palazzo dei Congressi all'E42 received and is no longer so, the symbol at the very geometry of space, but space itself and 'action' will be determined within this; action leading a movement, in the case of the Arco simbolico and the "Civiltà Italiana" or, more frequently, or celebration, as in the great Sala dei Recevimenti all’E42, which, in the first project proposal, is represented as a large area populated by people in suits, at a reception, in fact. In other words, in this second phase, the architecture is no longer a mere container, but it represents the shape of space, representing that which "contains". In the next step-determining the knowledge from which mature in their transition to post-war-is one step that radically changes the way centric space, although formally and compositionally Libera continues the work on the same elements, compounds and relationships in a different way . In this last phase Freedom, center, puts the man in human beings, in the two previous phases, and in a latent, were already at the center of the composition, even if relegated to the role of spectators in the first period, or of supporting actors in the second, now the heart of space. And it’s, as we shall see, the very form of being together in the form of "assembly", in its different shades (up to that sacred) to determine the shape of space, and how to relate the parts that combine to form it. The reconstruction of the birth, evolution and development of the central space of the ground in Libera, was born on the study of the monuments of ancient Rome, intersected on fifty years of recent history, honed on the constancy of a method and practice of a lifetime, becomes itself, Therefore, a project, employing the same mechanisms adopted by Libera; the decomposition and recomposition, research synthesis and unity of form, are in fact the structure of this research work. The road taken by Libera is a lesson in clarity and rationality, above all, and this work would uncover at least a fragment.
Resumo:
Background and aim Ulcerative Colitis (UC) and Crohn’s Disease (CD), collectively labelled as inflammatory bowel disease (IBD), are idiopathic, chronic inflammatory disorder of the bowel with a remitting and relapsing course. IBD are associated to poor emotional functioning and psychological distress. We have investigated the brain involvement in patients with IBD using functional magnetic resonance imaging (fMRI). Materials and methods We developed an emotional visual task to investigate the emotional functioning in 10 UC patients and 10 healthy controls (HC). Furthermore, we have compared the brain stress response between a group of 20 CD patients and a group of 18 HC. Finally, we evaluated potential morphological differences between 18 CD patients and 18 HC in a voxel based morphometry (VBM) study. Results We found brain functional changes in UC patients characterized by decreased activity in the amygdala in response to positive emotional stimuli. Moreover, in CD patients, the brain stress response and habituation to stressful stimuli were significantly different in the medial temporal lobe (including the amygdala and hippocampus), the insula and cerebellum. Finally, in CD patients there were morphological abnormalities in the anterior mid cingulated cortex (aMCC). Conclusion IBD are associated to functional and morphological brain abnormalities. The previous intestinal inflammatory activity in IBD patients might have contributed to determine the functional and morphological changes we found. On the other hand, the dysfunctions of the brain structures we found may influence the course of the disease. Our findings might have clinical implications. The differences in the emotional processing may play a role in the development of psychological disorders in UC patients. Furthermore, in CD patients, the different habituation to stress might contribute to stress related inflammatory exacerbations. Finally, the structural changes in the aMCC might be involved in the pain symptoms associated to the bowel disorder.
Resumo:
Osmotic Dehydration and Vacuum Impregnation are interesting operations in the food industry with applications in minimal fruit processing and/or freezing, allowing to develop new products with specific innovative characteristics. Osmotic dehydration is widely used for the partial removal of water from cellular tissue by immersion in hypertonic (osmotic) solution. The driving force for the diffusion of water from the tissue is provided by the differences in water chemical potential between the external solution and the internal liquid phase of the cells. Vacuum Impregnation of porous products immersed in a liquid phase consist of reduction of pressure in a solid-liquid system (vacuum step) followed by the restoration of atmospheric pressure (atmospheric step). During the vacuum step the internal gas in the product pores is expanded and partially flows out while during the atmospheric step, there is a compression of residual gas and the external liquid flows into the pores (Fito, 1994). This process is also a very useful unit operation in food engineering as it allows to introduce specific solutes in the tissue which can play different functions (antioxidants, pH regulators, preservatives, cryoprotectants etc.). The present study attempts to enhance our understanding and knowledge of fruit as living organism, interacting dynamically with the environment, and to explore metabolic, structural, physico-chemical changes during fruit processing. The use of innovative approaches and/or technologies such as SAFES (Systematic Approach to Food Engineering System), LF-NMR (Low Frequency Nuclear Magnetic Resonance), GASMAS (Gas in Scattering Media Absorption Spectroscopy) are very promising to deeply study these phenomena. SAFES methodology was applied in order to study irreversibility of the structural changes of kiwifruit during short time of osmotic treatment. The results showed that the deformed tissue can recover its initial state 300 min after osmotic dehydration at 25 °C. The LF-NMR resulted very useful in water status and compartmentalization study, permitting to separate observation of three different water population presented in vacuole, cytoplasm plus extracellular space and cell wall. GASMAS techniques was able to study the pressure equilibration after Vacuum Impregnation showing that after restoration of atmospheric pressure in the solid-liquid system, there was a reminding internal low pressure in the apple tissue that slowly increases until reaching the atmospheric pressure, in a time scale that depends on the vacuum applied during the vacuum step. The physiological response of apple tissue on Vacuum Impregnation process was studied indicating the possibility of vesicular transport within the cells. Finally, the possibility to extend the freezing tolerance of strawberry fruits impregnated with cryoprotectants was proven.
Resumo:
This thesis aims at explaining the intersecting dynamics of structural changes in agriculture and urbanisation, which involves changes in urban-rural relationships. The research questions are: how and why do landowners differ in their attitudes to land and farming? what are the main implications on rural landscapes and the policy implications? Relationships between urbanisation and agriculture are firstly analysed through a critical literature review; the analysis focuses on the 'landowner' as the key actor who actively takes decisions on the rural landscape From the empirical study – which is based on a Tuscan area (Valdera), and addressed through qualitative methods – a great diversity of landowners' attitudes to land and farming emerge, thus contributing to the agricultural restructuring, such as: 1) the emphasis on recreational function of the countryside for urban people 2) contracting out of land management, especially when landowners live or/and have 'urban' employment 3) the active role of hobby farmers in land management 4) agricultural operations simplification and lack of investments (especially in case of property rights expropriation). The thesis is framed in three papers, with the same methods and research questions. It seems evident that rural landscapes is subjected to functional changes (e.g. residential) and structural changes (landscape polarisation), which requires the need 1) to consider that rural landscape management is increasingly less connected to agricultural production as economic activity; 2) to give a coherence to the range of policy interventions (physical planning, landscape, sectoral).
Resumo:
The dynamic character of proteins strongly influences biomolecular recognition mechanisms. With the development of the main models of ligand recognition (lock-and-key, induced fit, conformational selection theories), the role of protein plasticity has become increasingly relevant. In particular, major structural changes concerning large deviations of protein backbones, and slight movements such as side chain rotations are now carefully considered in drug discovery and development. It is of great interest to identify multiple protein conformations as preliminary step in a screening campaign. Protein flexibility has been widely investigated, in terms of both local and global motions, in two diverse biological systems. On one side, Replica Exchange Molecular Dynamics has been exploited as enhanced sampling method to collect multiple conformations of Lactate Dehydrogenase A (LDHA), an emerging anticancer target. The aim of this project was the development of an Ensemble-based Virtual Screening protocol, in order to find novel potent inhibitors. On the other side, a preliminary study concerning the local flexibility of Opioid Receptors has been carried out through ALiBERO approach, an iterative method based on Elastic Network-Normal Mode Analysis and Monte Carlo sampling. Comparison of the Virtual Screening performances by using single or multiple conformations confirmed that the inclusion of protein flexibility in screening protocols has a positive effect on the probability to early recognize novel or known active compounds.