11 resultados para Inventory system with state dependent damands
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Spinal cord injury (SCI) results not only in paralysis; but it is also associated with a range of autonomic dysregulation that can interfere with cardiovascular, bladder, bowel, temperature, and sexual function. The entity of the autonomic dysfunction is related to the level and severity of injury to descending autonomic (sympathetic) pathways. For many years there was limited awareness of these issues and the attention given to them by the scientific and medical community was scarce. Yet, even if a new system to document the impact of SCI on autonomic function has recently been proposed, the current standard of assessment of SCI (American Spinal Injury Association (ASIA) examination) evaluates motor and sensory pathways, but not severity of injury to autonomic pathways. Beside the severe impact on quality of life, autonomic dysfunction in persons with SCI is associated with increased risk of cardiovascular disease and mortality. Therefore, obtaining information regarding autonomic function in persons with SCI is pivotal and clinical examinations and laboratory evaluations to detect the presence of autonomic dysfunction and quantitate its severity are mandatory. Furthermore, previous studies demonstrated that there is an intimate relationship between the autonomic nervous system and sleep from anatomical, physiological, and neurochemical points of view. Although, even if previous epidemiological studies demonstrated that sleep problems are common in spinal cord injury (SCI), so far only limited polysomnographic (PSG) data are available. Finally, until now, circadian and state dependent autonomic regulation of blood pressure (BP), heart rate (HR) and body core temperature (BcT) were never assessed in SCI patients. Aim of the current study was to establish the association between the autonomic control of the cardiovascular function and thermoregulation, sleep parameters and increased cardiovascular risk in SCI patients.
Resumo:
Obesity often predisposes to coronary heart disease, heart failure, and sudden death. Also, several studies suggest a reciprocal enhancing interaction between obesity and sleep curtailment. Aim of the present study was to go deeper in the understanding of sleep and cardiovascular regulation in an animal model of diet-induced obesity (DIO). According to this, Wake-Sleep (W-S) regulation, and W-S dependent regulation of cardiovascular and metabolic/thermoregulatory function was studied in DIO rats, under normal laboratory conditions and during sleep deprivation and the following recovery period, enhancing either wake or sleep, respectively. After 8 weeks of the delivery of a hypercaloric (HC) diet, treated animals were heavier than those fed a normocaloric (NC) diet (NC: 441 ±17g; HC: 557±17g). HC rats slept more than NC ones during the activity period (Dark) of the normal 12h:12h light-dark (LD) cycle (Wake: 67.3±1.2% and 57.2 ±1.6%; NREM sleep (NREMS): 26.8±1.0% and 34.0±1.4%; REM sleep (REMS): 5.7±0. 6% and 8.6±0.7%; for NC and HC, respectively; p<0.05 for all). HC rats were hypertensive throughout the W-S states, as shown by the mean arterial blood pressure values across the 24-h period (Wake: 90.0±5.3 and 97.3±1.3; NREMS: 85.1±5.5 and 92.2±1.2; REMS: 87.2±4.5 and 96.5±1.1, mmHg for NC and HC, respectively; p<0.05 for all). Also, HC rats appeared to be slightly bradycardic compared to NC ones (Wake: 359.8±9.3 and 352.4±7.7; NREMS: 332.5±10.1 and 328.9±5.4; REMS: 338.5±9.3 and 334.4±5.8; bpm for NC and HC, respectively; p<0.05 for Wake). In HC animals, sleep regulation was not apparently altered during the sleep rebound observed in the recovery period following sleep deprivation, although REMS rebound appeared to be quicker in NC animals. In conclusion, these results indicate that in the rat obesity interfere with W-S and cardiovascular regulation and that DIO rats are suitable for further studies aimed at a better understanding of obesity comorbidities.
Resumo:
Nano(bio)science and nano(bio)technology play a growing and tremendous interest both on academic and industrial aspects. They are undergoing rapid developments on many fronts such as genomics, proteomics, system biology, and medical applications. However, the lack of characterization tools for nano(bio)systems is currently considered as a major limiting factor to the final establishment of nano(bio)technologies. Flow Field-Flow Fractionation (FlFFF) is a separation technique that is definitely emerging in the bioanalytical field, and the number of applications on nano(bio)analytes such as high molar-mass proteins and protein complexes, sub-cellular units, viruses, and functionalized nanoparticles is constantly increasing. This can be ascribed to the intrinsic advantages of FlFFF for the separation of nano(bio)analytes. FlFFF is ideally suited to separate particles over a broad size range (1 nm-1 μm) according to their hydrodynamic radius (rh). The fractionation is carried out in an empty channel by a flow stream of a mobile phase of any composition. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media, and there is no stationary phase able to induce mechanical or shear stress on nanosized analytes, which are for these reasons kept in their native state. Characterization of nano(bio)analytes is made possible after fractionation by interfacing the FlFFF system with detection techniques for morphological, optical or mass characterization. For instance, FlFFF coupling with multi-angle light scattering (MALS) detection allows for absolute molecular weight and size determination, and mass spectrometry has made FlFFF enter the field of proteomics. Potentialities of FlFFF couplings with multi-detection systems are discussed in the first section of this dissertation. The second and the third sections are dedicated to new methods that have been developed for the analysis and characterization of different samples of interest in the fields of diagnostics, pharmaceutics, and nanomedicine. The second section focuses on biological samples such as protein complexes and protein aggregates. In particular it focuses on FlFFF methods developed to give new insights into: a) chemical composition and morphological features of blood serum lipoprotein classes, b) time-dependent aggregation pattern of the amyloid protein Aβ1-42, and c) aggregation state of antibody therapeutics in their formulation buffers. The third section is dedicated to the analysis and characterization of structured nanoparticles designed for nanomedicine applications. The discussed results indicate that FlFFF with on-line MALS and fluorescence detection (FD) may become the unparallel methodology for the analysis and characterization of new, structured, fluorescent nanomaterials.
Resumo:
It is usual to hear a strange short sentence: «Random is better than...». Why is randomness a good solution to a certain engineering problem? There are many possible answers, and all of them are related to the considered topic. In this thesis I will discuss about two crucial topics that take advantage by randomizing some waveforms involved in signals manipulations. In particular, advantages are guaranteed by shaping the second order statistic of antipodal sequences involved in an intermediate signal processing stages. The first topic is in the area of analog-to-digital conversion, and it is named Compressive Sensing (CS). CS is a novel paradigm in signal processing that tries to merge signal acquisition and compression at the same time. Consequently it allows to direct acquire a signal in a compressed form. In this thesis, after an ample description of the CS methodology and its related architectures, I will present a new approach that tries to achieve high compression by design the second order statistics of a set of additional waveforms involved in the signal acquisition/compression stage. The second topic addressed in this thesis is in the area of communication system, in particular I focused the attention on ultra-wideband (UWB) systems. An option to produce and decode UWB signals is direct-sequence spreading with multiple access based on code division (DS-CDMA). Focusing on this methodology, I will address the coexistence of a DS-CDMA system with a narrowband interferer. To do so, I minimize the joint effect of both multiple access (MAI) and narrowband (NBI) interference on a simple matched filter receiver. I will show that, when spreading sequence statistical properties are suitably designed, performance improvements are possible with respect to a system exploiting chaos-based sequences minimizing MAI only.
Resumo:
The thesis analyze a subject of renewed interest in bioengineering, the research and analysis of exercise parameters that maximize the neuromuscular and cardiovascular involvement in vibration treatment. The research activity was inspired by the increasing use of device able to provide localized or whole body vibration (WBV). In particular, the focus was placed on the vibrating platform and the effect that the vibrations have on the neuromuscular system and cardiovascular system. The aim of the thesis is to evaluate the effectiveness and efficiency of vibration applied to the entire body, in particular, it was investigated the effect of WBV on: 1) Oxygen consumption during static and dynamic squat; 2) Resonant frequency of the muscle groups of the lower limbs; 3) Oxygen consumption and electromyographic signals during static and dynamic squat. In the first three chapters are explained the state of the art concerning vibration treatments, the effects of vibration applied to the entire body, with the explanation of the basic mechanisms (Tonic Vibration Reflex, TVR) and the neuromuscular system, with particular attention to the skeletal muscles and the stretch reflex. In the fourth chapter is illustrated the set-up used for the experiments and the software, implemented in LabWindows in order to control the platform and acquire the electromyographic signal. In the fifth chapter were exposed experiments undertaken during the PhD years. In particular, the analysis of Whole Body Vibration effect on neurological and cardiovascular systems showed interesting results. The results indicate that the static squat with WBV produced higher neuromuscular and cardiorespiratory system activation for exercise duration <60 sec. Otherwise, if the single bout duration was higher than 60 sec, the greater cardiorespiratory system activation was achieved during the dynamic squat with WBV while higher neuromuscular activation was still obtained with the static exercise.
Resumo:
Chiroptical spectroscopies play a fundamental role in pharmaceutical analysis for the stereochemical characterisation of bioactive molecules, due to the close relationship between chirality and optical activity and the increasing evidence of stereoselectivity in the pharmacological and toxicological profiles of chiral drugs. The correlation between chiroptical properties and absolute stereochemistry, however, requires the development of accurate and reliable theoretical models. The present thesis will report the application of theoretical chiroptical spectroscopies in the field of drug analysis, with particular emphasis on the huge influence of conformational flexibility and solvation on chiroptical properties and on the main computational strategies available to describe their effects by means of electronic circular dichroism (ECD) spectroscopy and time-dependent density functional theory (TD-DFT) calculations. The combination of experimental chiroptical spectroscopies with state-of-the-art computational methods proved to be very efficient at predicting the absolute configuration of a wide range of bioactive molecules (fluorinated 2-arylpropionic acids, β-lactam derivatives, difenoconazole, fenoterol, mycoleptones, austdiol). The results obtained for the investigated systems showed that great care must be taken in describing the molecular system in the most accurate fashion, since chiroptical properties are very sensitive to small electronic and conformational perturbations. In the future, the improvement of theoretical models and methods, such as ab initio molecular dynamics, will benefit pharmaceutical analysis in the investigation of non-trivial effects on the chiroptical properties of solvated systems and in the characterisation of the stereochemistry of complex chiral drugs.
Resumo:
Restoring a correct implant kinematics and providing a good ligament balance and patellar tracking is mandatory to improve clinical and functional outcome after a Total Knee Replacement. Surgical navigation systems are a reliable and accurate tool to help the surgeon in achieving these goals. The aim of the present study was to use navigation system with an intra-operative surgical protocol to evaluate and determine an optimal implant kinematics during a Total Knee Replacement.
Resumo:
Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative condition. The aims of this study were to evaluate the association between sleep, the circadian system and autonomic function in a cohort of PSP patients. Methods: Patients with PSP diagnosed according to consensus criteria were recruited prospectively and retrospectively and performed the following tests: body core temperature (BcT), sleep-wake cycle, systolic and diastolic blood pressure (SBP, DBP) continuous monitoring for 48 h under controlled environmental conditions; cardiovascular reflex tests (CRTs). The analysis of circadian rhythmicity was performed with the single cosinor method. For state-dependent analysis, the mean value of variables in each sleep stage was calculated as well as the difference to the value in wake. Results: PSP patients presented a reduced total duration of night sleep, with frequent and prolonged awakenings. During daytime, patients had very short naps, suggesting a state of profound sleep deprivation across the 24-h. REM sleep behaviour disorder was found in 15%, restless legs syndrome in 46%, periodic limb movements in 52% and obstructive sleep apnea in 54%. BcT presented the expected fall during night-time, however, compared to controls, mean values during day and night were higher. However BcT state-dependent modulation was maintained. Increased BcT could be attributed to an inability to properly reduce sympathetic activity favoured by the sleep deprivation. At CRTs, PSP presented mild cardiovascular adrenergic impairment and preserved cardiovagal function. 14% had non-neurogenic orthostatic hypotension. Only 2 PSP presented the expected BP dipping pattern, possibly as a consequence of sleep disruption. State-dependent analysis showed a partial loss of the state-dependent modulation for SBP. Discussion: This study showed that PSP presented abnormalities of sleep, circadian rhythms and cardiovascular autonomic function that are likely to be closely linked one to another.
Resumo:
This coupled model combines two state-of-the-art numerical models, NEMO for the oceanic component and WRF for the atmospheric component and implements them at an appropriate resolution. The oceanic model has been implemented starting from the Mediterranean Forecasting System with a resolution of 1/24° and the domain was extended to exactly match the grid of a newly implemented atmospheric model for the same area. The uncoupled ocean model has been validated against SST observed data, both in the simulation of an extreme event and in the short-term forecast of two seasonal periods. A new setup of the model was successfully tested in which the downward radiative fluxes were prescribed from atmospheric forecasts. Various physical schemes, domain, boundary, and initial conditions were tested with the atmospheric model to obtain the best representation of medicane Ianos. The heat fluxes calculated by the uncoupled models were compared to determine which setup gave the best energy balance between the components of the coupled model. The coupling strategy used is the traditional one, where the ocean is driven by the surface stress, heat fluxes, and radiative fluxes computed in the atmospheric component, which in turn receives the SST and surface currents. As expected, the overall skills of the coupled model are slightly degraded compared to the uncoupled models, even though the positioning and timing of the cyclone at the time of the landfall is enhanced. The mean heat fluxes do not change compared to the uncoupled model, whereas the pattern of the shortwave radiation and latent heat is changed. Moreover, the two energy fluxes are larger in absolute values than those calculated with the MFS formulas. The fact that they have opposite signs give raise to a compensation error that limits the overall degradation of the coupled simulation.