5 resultados para Intraperitoneal chemotherapy
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Controlled delivery of anticancer drugs through osteotropic nanoparticles (NP) is a novel approach for the adjuvant therapy of osteolytic bone metastases. Doxorubicin (DXR) is widely used in chemotherapy, although its activity is restricted by dose-dependent cardiotoxicity and marrow toxicity. However, its efficacy can be improved when specific targeting at the tumor site is obtained. The aim of this study was to obtain osteotropic biodegradable NP by nanoprecipitation of a copolymer between poly(D,L-lactide-co-glycolide) (PLGA) and an osteotropic bisphosphonate, sodium alendronate (ALE). NP were subsequently characterised for their chemical-physical properties, biocompatibility, and the ability to inhibit osteoclast-mediated bone resorption, and then loaded with DXR. The effectiveness of NP-loaded DXR was investigated through in vitro and in vivo experiments, and compared to that of free DXR. For the in vitro analysis, six human cell lines were used as a representative panel of bone tumors, including breast and renal adenocarcinoma, osteosarcoma and neuroblastoma. The in vitro uptake and the inhibition of tumor cell proliferation were verified. To analyse the in vivo activity of NP-loaded DXR, osteolytic bone metastases were induced through the intratibial inoculation in BALB/c-nu/nu mice of a human breast cancer cell line, followed by the intraperitoneal administration of the free or NP-loaded DXR. In vitro, aAll of the cell lines were able to uptake both free and NP-loaded drug, and their proliferation was inhibited up to 80% after incubation either with free or NP-loaded DXR. In addition, in vivo experiments showed that NP-loaded DXR were also able to reduce the incidence of bone metastases, not only in comparison with untreated mice, but also with free DXR-treated mice. In conclusion, this research demonstrated an improvement in the therapeutic effect of the antineoplastic drug DXR, when loaded to bone-targeted NP conjugated with ALE. Osteotropic PLGA-ALE NP are suitable to be loaded with DXR and offer as a valuable tool for a tissue specific treatment of skeletal metastases.
Resumo:
The aim of the research project discussed in this thesis was to study the inhibition of aerobic glycolysis, that is the metabolic pathway exploited by cancer cells for the ATP generation. This observation has led to the evaluation of glycolytic inhibitors as potential anticancer agents. Lactate dehydrogenase (LDH) is the only enzyme whose inhibition should allow a blocking of aerobic glycolysis of tumor cells without damaging the normal cells which, in conditions of normal functional activity and sufficient oxygen supply, do not need this enzyme. In preliminar experiments we demonstrated that oxamic acid and tartronic acid, two LDH competitive inhibitors, impaired aerobic glycolysis and replication of cells from human hepatocellular carcinoma. Therefore, we proposed that the depletion of ATP levels in neoplastic cells, could improved the chemotherapeutic index of associated anticancer drugs; in particular, it was studied the association of oxamic acid and multi-targeted kinase inhibitors. A synergistic effect in combination with sorafenib was observed, and we demonstrated that this was related to the capacity of sorafenib to hinder the oxidative phosphorylation, so that cells were more dependent to aerobic glycolysis. These results linked to LDH blockage encouraged us to search for LDH inhibitors more powerful than oxamic acid; thus, in collaboration with the Department of Pharmaceutical Sciences of Bologna University we identified a new molecule, galloflavin, able to inhibit both A and B isoforms of LDH enzyme. The effects of galloflavin were studied on different human cancer cell lines (hepatocellular carcinoma, breast cancer, Burkitt’s lymphoma). Although exhibiting different power on the tested cell lines, galloflavin was constantly found to inhibit lactate and ATP production and to induce cell death, mainly in the form of apoptosis. Finally, as LDH-A is able to bind single stranded DNA, thus stimulating cell transcription, galloflavin effects were also studied on this other LDH function.
Resumo:
The gut microbiome (GM) is a plastic entity, capable of adapting in response to intrinsic and extrinsic factors. However, several circumstances can disrupt this homeostatic balance, forcing the GM to shift from a health-associated mutualistic configuration to a disease-associated profile. Nowadays, a new frontier of microbiome research is understanding the GM role in chemo-immunotherapies and clinical outcomes. Here, the role of the genotoxin‐producing pathogen Salmonella in colorectal carcinogenesis was characterized by in-vitro models. A synergistic effect of Salmonella and the CRC-associated mutation (APC gene) promoted a tumorigenic microenvironment by increasing cellular genomic instability. Subsequently, the GM involvement in anti-cancer therapies was investigated via next-generation sequencing in different patient cohorts. The GM trajectory during treatments was characterized for women with epithelial ovarian cancer and pediatric patients undergoing hematopoietic stem cell transplantation (HSCT). The results highlighted the loss of GM homeostasis, with diversity reduction, decrease in health-associated microorganisms and pathobiont bloom. Interestingly, a distinctive GM profile was identified in ovarian cancer patients with a poor response to chemotherapy compared to patients in remission. Moreover, maintenance of GM homeostasis through enteral feeding in pediatric HSCT patients highlighted a better prognosis, with reduced risk of clinical complications. In this context, the gut resistome – the pattern of GM antibiotic-resistance genes (ARGs) – was evaluated longitudinally in HSCT patients. The results showed new acquisitions and consolidation of ARGs already present in patients developing clinical complications. Antibiotic exposure was also evaluated in infants under low-dose antibiotic prophylaxis for vesico-ureteral reflux showing an impairment of the GM configuration with possible long-term health implications. Dramatic GM dysbiosis was finally observed in critically ill patients with COVID-19 (undergoing multiple drug therapies) and correlated with increased risk of bloodstream infection. All these findings pointed out the importance of maintaining GM homeostasis during chemotherapy treatments for improving patients’ clinical outcomes.
Resumo:
Background and aims: perioperative treatment is currently the gold standard approach for locally advanced gastric cancer (GC). Unfortunately, the phenomenon of patients dropping out of treatment has been frequently observed. The primary aims of this study were to verify if routine blood parameters, the inflammatory response markers, sarcopenia, and the depletion of adipose tissues were associated with compliance with neoadjuvant/perioperative chemotherapy. Methods and study design: sarcopenia and adipose indices were calculated with a CT scan before starting chemotherapy and before surgery. Blood samples were considered before the first and second cycles of chemotherapy. Results: A total of 84 patients with localized operable GC, were identified between September 2010 and January 2021. Forty-four patients (52.4%) did not complete the treatment according to the number of cycles planned/performed. Eight patients (9.5%) decided to suspend chemotherapy, seven patients (8.3%) discontinued because of clinical decision-making, 14 patients (16.7%) because of toxicity, and 15 patients (17.9%) for miscellaneous causes. Sarcopenia before starting chemotherapy was found to be present in 38 patients (50.7%) while it was in 47 patients (60%) at the CT scan before the gastrectomy. In multivariable analysis, both for changes tending to have a value of PLR at basal and in the second control a higher one than the cut-off (OR = 5.03, 95% CI: 1.34 - 18.89, p-value = 0.017), and for PLR which increased from a lower to a higher value in second control with respect to the cut off (OR = 4.64, 95% CI: 1.02 -21.02, p-value = 0.047) resulted associated with incomplete compliance. Conclusions: among the biological indicators, changes in the value of PLR with a tendency towards increasing compared to the cut-off appear to be an immediate indicator of incomplete compliance with neoadjuvant/perioperative treatment. More information is needed to reduce the causes of interruption.