3 resultados para Interval generalized vector spaces

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nell’ambito della presente tesi verrà descritto un approccio generalizzato per il controllo delle macchine elettriche trifasi; la prima parte è incentrata nello sviluppo di una metodologia di modellizzazione generale, ossia in grado di descrivere, da un punto di vista matematico, il comportamento di una generica macchina elettrica, che possa quindi includere in sé stessa tutte le caratteristiche salienti che possano caratterizzare ogni specifica tipologia di macchina elettrica. Il passo successivo è quello di realizzare un algoritmo di controllo per macchine elettriche che si poggi sulla teoria generalizzata e che utilizzi per il proprio funzionamento quelle grandezze offerte dal modello unico delle macchine elettriche. La tipologia di controllo che è stata utilizzata è quella che comunemente viene definita come controllo ad orientamento di campo (FOC), per la quale sono stati individuati degli accorgimenti atti a migliorarne le prestazioni dinamiche e di controllo della coppia erogata. Per concludere verrà presentata una serie di prove sperimentali con lo scopo di mettere in risalto alcuni aspetti cruciali nel controllo delle macchine elettriche mediante un algoritmo ad orientamento di campo e soprattutto di verificare l’attendibilità dell’approccio generalizzato alle macchine elettriche trifasi. I risultati sperimentali confermano quindi l’applicabilità del metodo a diverse tipologie di macchine (asincrone e sincrone) e sono stati verificate nelle condizioni operative più critiche: bassa velocità, alta velocità bassi carichi, dinamica lenta e dinamica veloce.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine Learning makes computers capable of performing tasks typically requiring human intelligence. A domain where it is having a considerable impact is the life sciences, allowing to devise new biological analysis protocols, develop patients’ treatments efficiently and faster, and reduce healthcare costs. This Thesis work presents new Machine Learning methods and pipelines for the life sciences focusing on the unsupervised field. At a methodological level, two methods are presented. The first is an “Ab Initio Local Principal Path” and it is a revised and improved version of a pre-existing algorithm in the manifold learning realm. The second contribution is an improvement over the Import Vector Domain Description (one-class learning) through the Kullback-Leibler divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable solution, an improved probabilistic model, and state-of-the-art performances. Both methods are tested through several experiments, with a central focus on their relevance in life sciences. Results show that they improve the performances achieved by their previous versions. At the applicative level, two pipelines are presented. The first one is for the analysis of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at identifying genes that may be involved in biological processes (e.g., the transition of tissues from normal to cancer). In this project, an R package is released on CRAN to make the pipeline accessible to the bioinformatic Community through high-level APIs. The second pipeline is in the drug discovery domain and is useful for identifying druggable pockets, namely regions of a protein with a high probability of accepting a small molecule (a drug). Both these pipelines achieve remarkable results. Lastly, a detour application is developed to identify the strengths/limitations of the “Principal Path” algorithm by analyzing Convolutional Neural Networks induced vector spaces. This application is conducted in the music and visual arts domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we explore the combinatorial properties of several polynomials arising in matroid theory. Our main motivation comes from the problem of computing them in an efficient way and from a collection of conjectures, mainly the real-rootedness and the monotonicity of their coefficients with respect to weak maps. Most of these polynomials can be interpreted as Hilbert--Poincaré series of graded vector spaces associated to a matroid and thus some combinatorial properties can be inferred via combinatorial algebraic geometry (non-negativity, palindromicity, unimodality); one of our goals is also to provide purely combinatorial interpretations of these properties, for example by redefining these polynomials as poset invariants (via the incidence algebra of the lattice of flats); moreover, by exploiting the bases polytopes and the valuativity of these invariants with respect to matroid decompositions, we are able to produce efficient closed formulas for every paving matroid, a class that is conjectured to be predominant among all matroids. One last goal is to extend part of our results to a higher categorical level, by proving analogous results on the original graded vector spaces via abelian categorification or on equivariant versions of these polynomials.