3 resultados para Interplanetary voyages

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground-based Earth troposphere calibration systems play an important role in planetary exploration, especially to carry out radio science experiments aimed at the estimation of planetary gravity fields. In these experiments, the main observable is the spacecraft (S/C) range rate, measured from the Doppler shift of an electromagnetic wave transmitted from ground, received by the spacecraft and coherently retransmitted back to ground. If the solar corona and interplanetary plasma noise is already removed from Doppler data, the Earth troposphere remains one of the main error sources in tracking observables. Current Earth media calibration systems at NASA’s Deep Space Network (DSN) stations are based upon a combination of weather data and multidirectional, dual frequency GPS measurements acquired at each station complex. In order to support Cassini’s cruise radio science experiments, a new generation of media calibration systems were developed, driven by the need to achieve the goal of an end-to-end Allan deviation of the radio link in the order of 3×〖10〗^(-15) at 1000 s integration time. The future ESA’s Bepi Colombo mission to Mercury carries scientific instrumentation for radio science experiments (a Ka-band transponder and a three-axis accelerometer) which, in combination with the S/C telecommunication system (a X/X/Ka transponder) will provide the most advanced tracking system ever flown on an interplanetary probe. Current error budget for MORE (Mercury Orbiter Radioscience Experiment) allows the residual uncalibrated troposphere to contribute with a value of 8×〖10〗^(-15) to the two-way Allan deviation at 1000 s integration time. The current standard ESA/ESTRACK calibration system is based on a combination of surface meteorological measurements and mathematical algorithms, capable to reconstruct the Earth troposphere path delay, leaving an uncalibrated component of about 1-2% of the total delay. In order to satisfy the stringent MORE requirements, the short time-scale variations of the Earth troposphere water vapor content must be calibrated at ESA deep space antennas (DSA) with more precise and stable instruments (microwave radiometers). In parallel to this high performance instruments, ESA ground stations should be upgraded to media calibration systems at least capable to calibrate both troposphere path delay components (dry and wet) at sub-centimetre level, in order to reduce S/C navigation uncertainties. The natural choice is to provide a continuous troposphere calibration by processing GNSS data acquired at each complex by dual frequency receivers already installed for station location purposes. The work presented here outlines the troposphere calibration technique to support both Deep Space probe navigation and radio science experiments. After an introduction to deep space tracking techniques, observables and error sources, in Chapter 2 the troposphere path delay is widely investigated, reporting the estimation techniques and the state of the art of the ESA and NASA troposphere calibrations. Chapter 3 deals with an analysis of the status and the performances of the NASA Advanced Media Calibration (AMC) system referred to the Cassini data analysis. Chapter 4 describes the current release of a developed GNSS software (S/W) to estimate the troposphere calibration to be used for ESA S/C navigation purposes. During the development phase of the S/W a test campaign has been undertaken in order to evaluate the S/W performances. A description of the campaign and the main results are reported in Chapter 5. Chapter 6 presents a preliminary analysis of microwave radiometers to be used to support radio science experiments. The analysis has been carried out considering radiometric measurements of the ESA/ESTEC instruments installed in Cabauw (NL) and compared with the requirements of MORE. Finally, Chapter 7 summarizes the results obtained and defines some key technical aspects to be evaluated and taken into account for the development phase of future instrumentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work consists of the investigation of the navigation of Pioneer 10 and 11 probes becoming known as the “Pioneer Anomaly”: the trajectories followed by the spacecrafts did not match the ones retrieved with standard navigation software. Mismatching appeared as a linear drift in the Doppler data received by the spacecrafts, which has been ascribed to a constant sunward acceleration of about 8.5×10-10 m/s2. The study presented hereafter tries to find a convincing explanation to this discrepancy. The research is based on the analysis of Doppler tracking data through the ODP (Orbit Determination Program), developed by NASA/JPL. The method can be summarized as: seek for any kind of physics affecting the dynamics of the spacecraft or the propagation of radiometric data, which may have not been properly taken into account previously, and check whether or not these might rule out the anomaly. A major effort has been put to build a thermal model of the spacecrafts for predicting the force due to anisotropic thermal radiation, since this is a model not natively included in the ODP. Tracking data encompassing more than twenty years of Pioneer 10 interplanetary cruise, plus twelve years of Pioneer 11 have been analyzed in light of the results of the thermal model. Different strategies of orbit determination have been implemented, including single arc, multi arc and stochastic filters, and their performance compared. Orbital solutions have been obtained without the needing of any acceleration other than the thermal recoil one indicating it as the responsible for the observed linear drift in the Doppler residuals. As a further support to this we checked that inclusion of additional constant acceleration as does not improve the quality of orbital solutions. All the tests performed lead to the conclusion that no anomalous acceleration is acting on Pioneers spacecrafts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the developments of new models and toolkits for the orbit determination codes to support and improve the precise radio tracking experiments of the Cassini-Huygens mission, an interplanetary mission to study the Saturn system. The core of the orbit determination process is the comparison between observed observables and computed observables. Disturbances in either the observed or computed observables degrades the orbit determination process. Chapter 2 describes a detailed study of the numerical errors in the Doppler observables computed by NASA's ODP and MONTE, and ESA's AMFIN. A mathematical model of the numerical noise was developed and successfully validated analyzing against the Doppler observables computed by the ODP and MONTE, with typical relative errors smaller than 10%. The numerical noise proved to be, in general, an important source of noise in the orbit determination process and, in some conditions, it may becomes the dominant noise source. Three different approaches to reduce the numerical noise were proposed. Chapter 3 describes the development of the multiarc library, which allows to perform a multi-arc orbit determination with MONTE. The library was developed during the analysis of the Cassini radio science gravity experiments of the Saturn's satellite Rhea. Chapter 4 presents the estimation of the Rhea's gravity field obtained from a joint multi-arc analysis of Cassini R1 and R4 fly-bys, describing in details the spacecraft dynamical model used, the data selection and calibration procedure, and the analysis method followed. In particular, the approach of estimating the full unconstrained quadrupole gravity field was followed, obtaining a solution statistically not compatible with the condition of hydrostatic equilibrium. The solution proved to be stable and reliable. The normalized moment of inertia is in the range 0.37-0.4 indicating that Rhea's may be almost homogeneous, or at least characterized by a small degree of differentiation.