18 resultados para Interaction human robot
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Industrial robots are both versatile and high performant, enabling the flexible automation typical of the modern Smart Factories. For safety reasons, however, they must be relegated inside closed fences and/or virtual safety barriers, to keep them strictly separated from human operators. This can be a limitation in some scenarios in which it is useful to combine the human cognitive skill with the accuracy and repeatability of a robot, or simply to allow a safe coexistence in a shared workspace. Collaborative robots (cobots), on the other hand, are intrinsically limited in speed and power in order to share workspace and tasks with human operators, and feature the very intuitive hand guiding programming method. Cobots, however, cannot compete with industrial robots in terms of performance, and are thus useful only in a limited niche, where they can actually bring an improvement in productivity and/or in the quality of the work thanks to their synergy with human operators. The limitations of both the pure industrial and the collaborative paradigms can be overcome by combining industrial robots with artificial vision. In particular, vision can be exploited for a real-time adjustment of the pre-programmed task-based robot trajectory, by means of the visual tracking of dynamic obstacles (e.g. human operators). This strategy allows the robot to modify its motion only when necessary, thus maintain a high level of productivity but at the same time increasing its versatility. Other than that, vision offers the possibility of more intuitive programming paradigms for the industrial robots as well, such as the programming by demonstration paradigm. These possibilities offered by artificial vision enable, as a matter of fact, an efficacious and promising way of achieving human-robot collaboration, which has the advantage of overcoming the limitations of both the previous paradigms yet keeping their strengths.
Resumo:
The most widespread work-related diseases are musculoskeletal disorders (MSD) caused by awkward postures and excessive effort to upper limb muscles during work operations. The use of wearable IMU sensors could monitor the workers constantly to prevent hazardous actions, thus diminishing work injuries. In this thesis, procedures are developed and tested for ergonomic analyses in a working environment, based on a commercial motion capture system (MoCap) made of 17 Inertial Measurement Units (IMUs). An IMU is usually made of a tri-axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer that, through sensor fusion algorithms, estimates its attitude. Effective strategies for preventing MSD rely on various aspects: firstly, the accuracy of the IMU, depending on the chosen sensor and its calibration; secondly, the correct identification of the pose of each sensor on the worker’s body; thirdly, the chosen multibody model, which must consider both the accuracy and the computational burden, to provide results in real-time; finally, the model scaling law, which defines the possibility of a fast and accurate personalization of the multibody model geometry. Moreover, the MSD can be diminished using collaborative robots (cobots) as assisted devices for complex or heavy operations to relieve the worker's effort during repetitive tasks. All these aspects are considered to test and show the efficiency and usability of inertial MoCap systems for assessing ergonomics evaluation in real-time and implementing safety control strategies in collaborative robotics. Validation is performed with several experimental tests, both to test the proposed procedures and to compare the results of real-time multibody models developed in this thesis with the results from commercial software. As an additional result, the positive effects of using cobots as assisted devices for reducing human effort in repetitive industrial tasks are also shown, to demonstrate the potential of wearable electronics in on-field ergonomics analyses for industrial applications.
Resumo:
Safe collaboration between a robot and human operator forms a critical requirement for deploying a robotic system into a manufacturing and testing environment. In this dissertation, the safety requirement for is developed and implemented for the navigation system of the mobile manipulators. A methodology for human-robot co-existence through a 3d scene analysis is also investigated. The proposed approach exploits the advance in computing capability by relying on graphic processing units (GPU’s) for volumetric predictive human-robot contact checking. Apart from guaranteeing safety of operators, human-robot collaboration is also fundamental when cooperative activities are required, as in appliance test automation floor. To achieve this, a generalized hierarchical task controller scheme for collision avoidance is developed. This allows the robotic arm to safely approach and inspect the interior of the appliance without collision during the testing procedure. The unpredictable presence of the operators also forms dynamic obstacle that changes very fast, thereby requiring a quick reaction from the robot side. In this aspect, a GPU-accelarated distance field is computed to speed up reaction time to avoid collision between human operator and the robot. An automated appliance testing also involves robotized laundry loading and unloading during life cycle testing. This task involves Laundry detection, grasp pose estimation and manipulation in a container, inside the drum and during recovery grasping. A wrinkle and blob detection algorithms for grasp pose estimation are developed and grasp poses are calculated along the wrinkle and blobs to efficiently perform grasping task. By ranking the estimated laundry grasp poses according to a predefined cost function, the robotic arm attempt to grasp poses that are more comfortable from the robot kinematic side as well as collision free on the appliance side. This is achieved through appliance detection and full-model registration and collision free trajectory execution using online collision avoidance.
Resumo:
The industrial context is changing rapidly due to advancements in technology fueled by the Internet and Information Technology. The fourth industrial revolution counts integration, flexibility, and optimization as its fundamental pillars, and, in this context, Human-Robot Collaboration has become a crucial factor for manufacturing sustainability in Europe. Collaborative robots are appealing to many companies due to their low installation and running costs and high degree of flexibility, making them ideal for reshoring production facilities with a short return on investment. The ROSSINI European project aims to implement a true Human-Robot Collaboration by designing, developing, and demonstrating a modular and scalable platform for integrating human-centred robotic technologies in industrial production environments. The project focuses on safety concerns related to introducing a cobot in a shared working area and aims to lay the groundwork for a new working paradigm at the industrial level. The need for a software architecture suitable to the robotic platform employed in one of three use cases selected to deploy and test the new technology was the main trigger of this Thesis. The chosen application consists of the automatic loading and unloading of raw-material reels to an automatic packaging machine through an Autonomous Mobile Robot composed of an Autonomous Guided Vehicle, two collaborative manipulators, and an eye-on-hand vision system for performing tasks in a partially unstructured environment. The results obtained during the ROSSINI use case development were later used in the SENECA project, which addresses the need for robot-driven automatic cleaning of pharmaceutical bins in a very specific industrial context. The inherent versatility of mobile collaborative robots is evident from their deployment in the two projects with few hardware and software adjustments. The positive impact of Human-Robot Collaboration on diverse production lines is a motivation for future investments in research on this increasingly popular field by the industry.
Resumo:
Bifidobacterium is an important genus of the human gastrointestinal microbiota, affecting several host physiological features. Despite the numerous Bifidobacterium related health-promoting activities, there is still a dearth of information about the molecular mechanisms at the basis of the interaction between this microorganism and the host. Bacterial surface associated proteins may play an important role in this interaction because of their ability to intervene with host molecules, as recently reported for the host protein plasminogen. Plasminogen is the zymogen of the trypsin-like serine protease plasmin, an enzyme with a broad substrate specificity. Aim of this thesis is to deepen the knowledge about the interaction between Bifidobacterium and the human plasminogen system and its role in the Bifidobacterium-host interaction process. As a bifidobacterial model, B. animalis subsp. lactis BI07 has been used because of its large usage in dairy and pharmaceutical preparations. We started from the molecular characterization of the interaction between plasminogen and one bifidobacterial plasminogen receptor, DnaK, a cell wall protein showing high affinity for plasminogen, and went on with the study of the impact of intestinal environmental factors, such as bile salts and inflammation, on the plasminogen-mediated Bifidobacterium-host interaction. According to our in vitro findings, by enhancing the activation of the bifidobacterial bound plasminogen to plasmin, the host inflammatory response results in the decrease of the bifidobacterial adhesion to the host enterocytes, favouring bacterial migration to the luminal compartment. Conversely, in the absence of inflammation, plasminogen acts as a molecular bridge between host enterocytes and bifidobacteria, enhancing Bifidobacterium adhesion. Furthermore, adaptation to physiological concentrations of bile salts enhances the capability of this microorganism to interact with the host plasminogen system. The host plasminogen system thus represents an important and flexible tool used by bifidobacteria in the cross-talk with the host.
Resumo:
The advent of omic data production has opened many new perspectives in the quest for modelling complexity in biophysical systems. With the capability of characterizing a complex organism through the patterns of its molecular states, observed at different levels through various omics, a new paradigm of investigation is arising. In this thesis, we investigate the links between perturbations of the human organism, described as the ensemble of crosstalk of its molecular states, and health. Machine learning plays a key role within this picture, both in omic data analysis and model building. We propose and discuss different frameworks developed by the author using machine learning for data reduction, integration, projection on latent features, pattern analysis, classification and clustering of omic data, with a focus on 1H NMR metabolomic spectral data. The aim is to link different levels of omic observations of molecular states, from nanoscale to macroscale, to study perturbations such as diseases and diet interpreted as changes in molecular patterns. The first part of this work focuses on the fingerprinting of diseases, linking cellular and systemic metabolomics with genomic to asses and predict the downstream of perturbations all the way down to the enzymatic network. The second part is a set of frameworks and models, developed with 1H NMR metabolomic at its core, to study the exposure of the human organism to diet and food intake in its full complexity, from epidemiological data analysis to molecular characterization of food structure.
Resumo:
The knee joint is a key structure of the human locomotor system. The knowledge of how each single anatomical structure of the knee contributes to determine the physiological function of the knee, is of fundamental importance for the development of new prostheses and novel clinical, surgical, and rehabilitative procedures. In this context, a modelling approach is necessary to estimate the biomechanic function of each anatomical structure during daily living activities. The main aim of this study was to obtain a subject-specific model of the knee joint of a selected healthy subject. In particular, 3D models of the cruciate ligaments and of the tibio-femoral articular contact were proposed and developed using accurate bony geometries and kinematics reliably recorded by means of nuclear magnetic resonance and 3D video-fluoroscopy from the selected subject. Regarding the model of the cruciate ligaments, each ligament was modelled with 25 linear-elastic elements paying particular attention to the anatomical twisting of the fibres. The devised model was as subject-specific as possible. The geometrical parameters were directly estimated from the experimental measurements, whereas the only mechanical parameter of the model, the elastic modulus, had to be considered from the literature because of the invasiveness of the needed measurements. Thus, the developed model was employed for simulations of stability tests and during living activities. Physiologically meaningful results were always obtained. Nevertheless, the lack of subject-specific mechanical characterization induced to design and partially develop a novel experimental method to characterize the mechanics of the human cruciate ligaments in living healthy subjects. Moreover, using the same subject-specific data, the tibio-femoral articular interaction was modelled investigating the location of the contact point during the execution of daily motor tasks and the contact area at the full extension with and without the whole body weight of the subject. Two different approaches were implemented and their efficiency was evaluated. Thus, pros and cons of each approach were discussed in order to suggest future improvements of this methodologies. The final results of this study will contribute to produce useful methodologies for the investigation of the in-vivo function and pathology of the knee joint during the execution of daily living activities. Thus, the developed methodologies will be useful tools for the development of new prostheses, tools and procedures both in research field and in diagnostic, surgical and rehabilitative fields.
Resumo:
High serum levels of Interleukin-6 (IL-6) correlate with poor outcome in breast cancer patients. However no data are available on the relationship between IL-6 and stem/progenitor cells which may fuel the genesis of breast cancer in vivo. Herein, we address this issue in mammospheres (MS), multi-cellular structures enriched in stem/progenitor cells of the mammary gland, and also in MCF-7 breast cancer cells. We show that MS from node invasive breast carcinoma tissues express IL-6 mRNA at higher levels than MS from matched non-neoplastic mammary glands. We find that IL-6 mRNA is detectable only in basal-like breast carcinoma tissues, an aggressive variant showing stem cell features. Our results reveal that IL-6 triggers a Notch-3-dependent up-regulation of the Notch ligand Jagged-1, whose interaction with Notch-3 promotes the growth of MS and MCF-7 derived spheroids. Moreover, IL-6 induces a Notch-3-dependent up-regulation of the carbonic anhydrase IX gene, which promotes a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS. Finally, an autocrine IL-6 loop relies upon Notch-3 activity to sustain the aggressive features of MCF-7-derived hypoxia-selected cells. In conclusion, our data support the hypothesis that IL-6 induces malignant features in Notch-3 expressing, stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.
Resumo:
The aim of this work is to put forward a statistical mechanics theory of social interaction, generalizing econometric discrete choice models. After showing the formal equivalence linking econometric multinomial logit models to equilibrium statical mechanics, a multi- population generalization of the Curie-Weiss model for ferromagnets is considered as a starting point in developing a model capable of describing sudden shifts in aggregate human behaviour. Existence of the thermodynamic limit for the model is shown by an asymptotic sub-additivity method and factorization of correlation functions is proved almost everywhere. The exact solution for the model is provided in the thermodynamical limit by nding converging upper and lower bounds for the system's pressure, and the solution is used to prove an analytic result regarding the number of possible equilibrium states of a two-population system. The work stresses the importance of linking regimes predicted by the model to real phenomena, and to this end it proposes two possible procedures to estimate the model's parameters starting from micro-level data. These are applied to three case studies based on census type data: though these studies are found to be ultimately inconclusive on an empirical level, considerations are drawn that encourage further refinements of the chosen modelling approach, to be considered in future work.
Resumo:
Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.
Resumo:
Alzheimer's disease (AD) is probably caused by both genetic and environmental risk factors. The major genetic risk factor is the E4 variant of apolipoprotein E gene called apoE4. Several risk factors for developing AD have been identified including lifestyle, such as dietary habits. The mechanisms behind the AD pathogenesis and the onset of cognitive decline in the AD brain are presently unknown. In this study we wanted to characterize the effects of the interaction between environmental risk factors and apoE genotype on neurodegeneration processes, with particular focus on behavioural studies and neurodegenerative processes at molecular level. Towards this aim, we used 6 months-old apoE4 and apoE3 Target Replacement (TR) mice fed on different diets (high intake of cholesterol and high intake of carbohydrates). These mice were evaluated for learning and memory deficits in spatial reference (Morris Water Maze (MWM)) and contextual learning (Passive Avoidance) tasks, which involve the hippocampus and the amygdala, respectively. From these behavioural studies we found that the initial cognitive impairments manifested as a retention deficit in apoE4 mice fed on high carbohydrate diet. Thus, the genetic risk factor apoE4 genotype associated with a high carbohydrate diet seems to affect cognitive functions in young mice, corroborating the theory that the combination of genetic and environmental risk factors greatly increases the risk of developing AD and leads to an earlier onset of cognitive deficits. The cellular and molecular bases of the cognitive decline in AD are largely unknown. In order to determine the molecular changes for the onset of the early cognitive impairment observed in the behavioural studies, we performed molecular studies, with particular focus on synaptic integrity and Tau phosphorylation. The most relevant finding of our molecular studies showed a significant decrease of Brain-derived Neurotrophic Factor (BDNF) in apoE4 mice fed on high carbohydrate diet. Our results may suggest that BDNF decrease found in apoE4 HS mice could be involved in the earliest impairment in long-term reference memory observed in behavioural studies. The second aim of this thesis was to study possible involvement of leptin in AD. There is growing evidence that leptin has neuroprotective properties in the Central Nervous System (CNS). Recent evidence has shown that leptin and its receptors are widespread in the CNS and may provide neuronal survival signals. However, there are still numerous questions, regarding the molecular mechanism by which leptin acts, that remain unanswered. Thus, given to the importance of the involvement of leptin in AD, we wanted to clarify the function of leptin in the pathogenesis of AD and to investigate if apoE genotype affect leptin levels through studies in vitro, in mice and in human. Our findings suggest that apoE4 TR mice showed an increase of leptin in the brain. Leptin levels are also increased in the cerebral spinal fluid of AD patients and apoE4 carriers with AD have higher levels of leptin than apoE3 carriers. Moreover, leptin seems to be expressed by reactive glial cells in AD brains. In vitro, ApoE4 together with Amyloid beta increases leptin production by microglia and astrocytes. Taken together, all these findings suggest that leptin replacement might not be a good strategy for AD therapy. Our results show that high leptin levels were found in AD brains. These findings suggest that, as high leptin levels do not promote satiety in obese individuals, it might be possible that they do not promote neuroprotection in AD patients. Therefore, we hypothesized that AD brain could suffer from leptin resistance. Further studies will be critical to determine whether or not the central leptin resistance in SNC could affect its potential neuroprotective effects.
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.
Resumo:
The human p53 tumor suppressor, known as the “guardian of the genome”, is one of the most important molecules in human cancers. One mechanism for suppressing p53 uses its negative regulator, MDM2, which modulates p53 by binding directly to and decreasing p53 stability. In testing novel therapeutic approaches activating p53, we investigated the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-Acute lymphoblastic leukemia (ALL) patient samples. In this study we demonstrated that treatment with Nutlin-3a induced grow arrest and apoptosis mediated by p53 pathway in ALL cells with wild-type p53, in time and dose-dependent manner. Consequently, MDM2 inhibitor caused an increase of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from Ph+ ALL patients with the T315I Bcr-Abl kinase domain mutation. In order to better elucidate the implications of p53 activation and to identify biomarkers of clinical activity, gene expression profiling analysis in sensitive cell lines was performed. A total of 621 genes were differentially expressed (p < 0.05). We found a strong down-regulation of GAS41 (growth-arrest specific 1 gene) and BMI1 (a polycomb ring-finger oncogene) (fold-change -1.35 and -1.11, respectively; p-value 0.02 and 0.03, respectively) after in vitro treatment as compared to control cells. Both genes are repressors of INK4/ARF and p21. Given the importance of BMI in the control of apoptosis, we investigated its pattern in treated and untreated cells, confirming a marked decrease after exposure to MDM2 inhibitor in ALL cells. Noteworthy, the BMI-1 levels remained constant in resistant cells. Therefore, BMI-1 may be used as a biomarker of response. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph-ALL.
Resumo:
Adhesion, immune evasion and invasion are key determinants during bacterial pathogenesis. Pathogenic bacteria possess a wide variety of surface exposed and secreted proteins which allow them to adhere to tissues, escape the immune system and spread throughout the human body. Therefore, extensive contacts between the human and the bacterial extracellular proteomes take place at the host-pathogen interface at the protein level. Recent researches emphasized the importance of a global and deeper understanding of the molecular mechanisms which underlie bacterial immune evasion and pathogenesis. Through the use of a large-scale, unbiased, protein microarray-based approach and of wide libraries of human and bacterial purified proteins, novel host-pathogen interactions were identified. This approach was first applied to Staphylococcus aureus, cause of a wide variety of diseases ranging from skin infections to endocarditis and sepsis. The screening led to the identification of several novel interactions between the human and the S. aureus extracellular proteomes. The interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting, was characterized using label-free techniques and functional assays. The same approach was also applied to Neisseria meningitidis, major cause of bacterial meningitis and fulminant sepsis worldwide. The screening led to the identification of several potential human receptors for the neisserial adhesin A (NadA), an important adhesion protein and key determinant of meningococcal interactions with the human host at various stages. The interaction between NadA and human LOX-1 (low-density oxidized lipoprotein receptor) was confirmed using label-free technologies and cell binding experiments in vitro. Taken together, these two examples provided concrete insights into S. aureus and N. meningitidis pathogenesis, and identified protein microarray coupled with appropriate validation methodologies as a powerful large scale tool for host-pathogen interactions studies.