8 resultados para Intelligent tutoring system
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the last years, Intelligent Tutoring Systems have been a very successful way for improving learning experience. Many issues must be addressed until this technology can be defined mature. One of the main problems within the Intelligent Tutoring Systems is the process of contents authoring: knowledge acquisition and manipulation processes are difficult tasks because they require a specialised skills on computer programming and knowledge engineering. In this thesis we discuss a general framework for knowledge management in an Intelligent Tutoring System and propose a mechanism based on first order data mining to partially automate the process of knowledge acquisition that have to be used in the ITS during the tutoring process. Such a mechanism can be applied in Constraint Based Tutor and in the Pseudo-Cognitive Tutor. We design and implement a part of the proposed architecture, mainly the module of knowledge acquisition from examples based on first order data mining. We then show that the algorithm can be applied at least two different domains: first order algebra equation and some topics of C programming language. Finally we discuss the limitation of current approach and the possible improvements of the whole framework.
Resumo:
Intelligent Transport Systems (ITS) consists in the application of ICT to transport to offer new and improved services to the mobility of people and freights. While using ITS, travellers produce large quantities of data that can be collected and analysed to study their behaviour and to provide information to decision makers and planners. The thesis proposes innovative deployments of classification algorithms for Intelligent Transport System with the aim to support the decisions on traffic rerouting, bus transport demand and behaviour of two wheelers vehicles. The first part of this work provides an overview and a classification of a selection of clustering algorithms that can be implemented for the analysis of ITS data. The first contribution of this thesis is an innovative use of the agglomerative hierarchical clustering algorithm to classify similar travels in terms of their origin and destination, together with the proposal for a methodology to analyse drivers’ route choice behaviour using GPS coordinates and optimal alternatives. The clusters of repetitive travels made by a sample of drivers are then analysed to compare observed route choices to the modelled alternatives. The results of the analysis show that drivers select routes that are more reliable but that are more expensive in terms of travel time. Successively, different types of users of a service that provides information on the real time arrivals of bus at stop are classified using Support Vector Machines. The results shows that the results of the classification of different types of bus transport users can be used to update or complement the census on bus transport flows. Finally, the problem of the classification of accidents made by two wheelers vehicles is presented together with possible future application of clustering methodologies aimed at identifying and classifying the different types of accidents.
Resumo:
The Internet of Vehicles (IoV) paradigm has emerged in recent times, where with the support of technologies like the Internet of Things and V2X , Vehicular Users (VUs) can access different services through internet connectivity. With the support of 6G technology, the IoV paradigm will evolve further and converge into a fully connected and intelligent vehicular system. However, this brings new challenges over dynamic and resource-constrained vehicular systems, and advanced solutions are demanded. This dissertation analyzes the future 6G enabled IoV systems demands, corresponding challenges, and provides various solutions to address them. The vehicular services and application requests demands proper data processing solutions with the support of distributed computing environments such as Vehicular Edge Computing (VEC). While analyzing the performance of VEC systems it is important to take into account the limited resources, coverage, and vehicular mobility into account. Recently, Non terrestrial Networks (NTN) have gained huge popularity for boosting the coverage and capacity of terrestrial wireless networks. Integrating such NTN facilities into the terrestrial VEC system can address the above mentioned challenges. Additionally, such integrated Terrestrial and Non-terrestrial networks (T-NTN) can also be considered to provide advanced intelligent solutions with the support of the edge intelligence paradigm. In this dissertation, we proposed an edge computing-enabled joint T-NTN-based vehicular system architecture to serve VUs. Next, we analyze the terrestrial VEC systems performance for VUs data processing problems and propose solutions to improve the performance in terms of latency and energy costs. Next, we extend the scenario toward the joint T-NTN system and address the problem of distributed data processing through ML-based solutions. We also proposed advanced distributed learning frameworks with the support of a joint T-NTN framework with edge computing facilities. In the end, proper conclusive remarks and several future directions are provided for the proposed solutions.
Resumo:
Reasoning under uncertainty is a human capacity that in software system is necessary and often hidden. Argumentation theory and logic make explicit non-monotonic information in order to enable automatic forms of reasoning under uncertainty. In human organization Distributed Cognition and Activity Theory explain how artifacts are fundamental in all cognitive process. Then, in this thesis we search to understand the use of cognitive artifacts in an new argumentation framework for an agent-based artificial society.
Resumo:
Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.
Resumo:
The convergence between the recent developments in sensing technologies, data science, signal processing and advanced modelling has fostered a new paradigm to the Structural Health Monitoring (SHM) of engineered structures, which is the one based on intelligent sensors, i.e., embedded devices capable of stream processing data and/or performing structural inference in a self-contained and near-sensor manner. To efficiently exploit these intelligent sensor units for full-scale structural assessment, a joint effort is required to deal with instrumental aspects related to signal acquisition, conditioning and digitalization, and those pertaining to data management, data analytics and information sharing. In this framework, the main goal of this Thesis is to tackle the multi-faceted nature of the monitoring process, via a full-scale optimization of the hardware and software resources involved by the {SHM} system. The pursuit of this objective has required the investigation of both: i) transversal aspects common to multiple application domains at different abstraction levels (such as knowledge distillation, networking solutions, microsystem {HW} architectures), and ii) the specificities of the monitoring methodologies (vibrations, guided waves, acoustic emission monitoring). The key tools adopted in the proposed monitoring frameworks belong to the embedded signal processing field: namely, graph signal processing, compressed sensing, ARMA System Identification, digital data communication and TinyML.
Resumo:
Intelligent systems are currently inherent to the society, supporting a synergistic human-machine collaboration. Beyond economical and climate factors, energy consumption is strongly affected by the performance of computing systems. The quality of software functioning may invalidate any improvement attempt. In addition, data-driven machine learning algorithms are the basis for human-centered applications, being their interpretability one of the most important features of computational systems. Software maintenance is a critical discipline to support automatic and life-long system operation. As most software registers its inner events by means of logs, log analysis is an approach to keep system operation. Logs are characterized as Big data assembled in large-flow streams, being unstructured, heterogeneous, imprecise, and uncertain. This thesis addresses fuzzy and neuro-granular methods to provide maintenance solutions applied to anomaly detection (AD) and log parsing (LP), dealing with data uncertainty, identifying ideal time periods for detailed software analyses. LP provides deeper semantics interpretation of the anomalous occurrences. The solutions evolve over time and are general-purpose, being highly applicable, scalable, and maintainable. Granular classification models, namely, Fuzzy set-Based evolving Model (FBeM), evolving Granular Neural Network (eGNN), and evolving Gaussian Fuzzy Classifier (eGFC), are compared considering the AD problem. The evolving Log Parsing (eLP) method is proposed to approach the automatic parsing applied to system logs. All the methods perform recursive mechanisms to create, update, merge, and delete information granules according with the data behavior. For the first time in the evolving intelligent systems literature, the proposed method, eLP, is able to process streams of words and sentences. Essentially, regarding to AD accuracy, FBeM achieved (85.64+-3.69)%; eGNN reached (96.17+-0.78)%; eGFC obtained (92.48+-1.21)%; and eLP reached (96.05+-1.04)%. Besides being competitive, eLP particularly generates a log grammar, and presents a higher level of model interpretability.
Resumo:
This Thesis wants to highlight the importance of ad-hoc designed and developed embedded systems in the implementation of intelligent sensor networks. As evidence four areas of application are presented: Precision Agriculture, Bioengineering, Automotive and Structural Health Monitoring. For each field is reported one, or more, smart device design and developing, in addition to on-board elaborations, experimental validation and in field tests. In particular, it is presented the design and development of a fruit meter. In the bioengineering field, three different projects are reported, detailing the architectures implemented and the validation tests conducted. Two prototype realizations of an inner temperature measurement system in electric motors for an automotive application are then discussed. Lastly, the HW/SW design of a Smart Sensor Network is analyzed: the network features on-board data management and processing, integration in an IoT toolchain, Wireless Sensor Network developments and an AI framework for vibration-based structural assessment.