3 resultados para Integrated Water Resource Management

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development aid involves a complex network of numerous and extremely heterogeneous actors. Nevertheless, all actors seem to speak the same ‘development jargon’ and to display a congruence that extends from the donor over the professional consultant to the village chief. And although the ideas about what counts as ‘good’ and ‘bad’ aid have constantly changed over time —with new paradigms and policies sprouting every few years— the apparent congruence between actors more or less remains unchanged. How can this be explained? Is it a strategy of all actors to get into the pocket of the donor, or are the social dynamics in development aid more complex? When a new development paradigm appears, where does it come from and how does it gain support? Is this support really homogeneous? To answer the questions, a multi-sited ethnography was conducted in the sector of water-related development aid, with a focus on 3 paradigms that are currently hegemonic in this sector: Integrated Water Resources Management, Capacity Building, and Adaptation to Climate Change. The sites of inquiry were: the headquarters of a multilateral organization, the headquarters of a development NGO, and the Inner Niger Delta in Mali. The research shows that paradigm shifts do not happen overnight but that new paradigms have long lines of descent. Moreover, they require a lot of work from actors in order to become hegemonic; the actors need to create a tight network of support. Each actor, however, interprets the paradigms in a slightly different way, depending on the position in the network. They implant their own interests in their interpretation of the paradigm (the actors ‘translate’ their interests), regardless of whether they constitute the donor, a mediator, or the aid recipient. These translations are necessary to cement and reproduce the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.