6 resultados para Integrable field theories
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this thesis, we present our work about some generalisations of ideas, techniques and physical interpretations typical for integrable models to one of the most outstanding advances in theoretical physics of nowadays: the AdS/CFT correspondences. We have undertaken the problem of testing this conjectured duality under various points of view, but with a clear starting point - the integrability - and with a clear ambitious task in mind: to study the finite-size effects in the energy spectrum of certain string solutions on a side and in the anomalous dimensions of the gauge theory on the other. Of course, the final desire woul be the exact comparison between these two faces of the gauge/string duality. In few words, the original part of this work consists in application of well known integrability technologies, in large parte borrowed by the study of relativistic (1+1)-dimensional integrable quantum field theories, to the highly non-relativisic and much complicated case of the thoeries involved in the recent conjectures of AdS5/CFT4 and AdS4/CFT3 corrspondences. In details, exploiting the spin chain nature of the dilatation operator of N = 4 Super-Yang-Mills theory, we concentrated our attention on one of the most important sector, namely the SL(2) sector - which is also very intersting for the QCD understanding - by formulating a new type of nonlinear integral equation (NLIE) based on a previously guessed asymptotic Bethe Ansatz. The solutions of this Bethe Ansatz are characterised by the length L of the correspondent spin chain and by the number s of its excitations. A NLIE allows one, at least in principle, to make analytical and numerical calculations for arbitrary values of these parameters. The results have been rather exciting. In the important regime of high Lorentz spin, the NLIE clarifies how it reduces to a linear integral equations which governs the subleading order in s, o(s0). This also holds in the regime with L ! 1, L/ ln s finite (long operators case). This region of parameters has been particularly investigated in literature especially because of an intriguing limit into the O(6) sigma model defined on the string side. One of the most powerful methods to keep under control the finite-size spectrum of an integrable relativistic theory is the so called thermodynamic Bethe Ansatz (TBA). We proposed a highly non-trivial generalisation of this technique to the non-relativistic case of AdS5/CFT4 and made the first steps in order to determine its full spectrum - of energies for the AdS side, of anomalous dimensions for the CFT one - at any values of the coupling constant and of the size. At the leading order in the size parameter, the calculation of the finite-size corrections is much simpler and does not necessitate the TBA. It consists in deriving for a nonrelativistc case a method, invented for the first time by L¨uscher to compute the finite-size effects on the mass spectrum of relativisic theories. So, we have formulated a new version of this approach to adapt it to the case of recently found classical string solutions on AdS4 × CP3, inside the new conjecture of an AdS4/CFT3 correspondence. Our results in part confirm the string and algebraic curve calculations, in part are completely new and then could be better understood by the rapidly evolving developments of this extremely exciting research field.
Resumo:
In this thesis work I analyze higher spin field theories from a first quantized perspective, finding in particular new equations describing complex higher spin fields on Kaehler manifolds. They are studied by means of worldline path integrals and canonical quantization, in the framework of supersymmetric spinning particle theories, in order to investigate their quantum properties both in flat and curved backgrounds. For instance, by quantizing a spinning particle with one complex extended supersymmetry, I describe quantum massless (p,0)-forms and find a worldline representation for their effective action on a Kaehler background, as well as exact duality relations. Interesting results are found also in the definition of the functional integral for the so called O(N) spinning particles, that will allow to study real higher spins on curved spaces. In the second part, I study Weyl invariant field theories by using a particular mathematical framework known as tractor calculus, that enable to maintain at each step manifest Weyl covariance.
Resumo:
In this work, we discuss some theoretical topics related to many-body physics in ultracold atomic and molecular gases. First, we present a comparison between experimental data and theoretical predictions in the context of quantum emulator of quantum field theories, finding good results which supports the efficiency of such simulators. In the second and third parts, we investigate several many-body properties of atomic and molecular gases confined in one dimension.
Resumo:
In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).
Resumo:
We study some perturbative and nonperturbative effects in the framework of the Standard Model of particle physics. In particular we consider the time dependence of the Higgs vacuum expectation value given by the dynamics of the StandardModel and study the non-adiabatic production of both bosons and fermions, which is intrinsically non-perturbative. In theHartree approximation, we analyze the general expressions that describe the dissipative dynamics due to the backreaction of the produced particles. Then, we solve numerically some relevant cases for the Standard Model phenomenology in the regime of relatively small oscillations of the Higgs vacuum expectation value (vev). As perturbative effects, we consider the leading logarithmic resummation in small Bjorken x QCD, concentrating ourselves on the Nc dependence of the Green functions associated to reggeized gluons. Here the eigenvalues of the BKP kernel for states of more than three reggeized gluons are unknown in general, contrary to the large Nc limit (planar limit) case where the problem becomes integrable. In this contest we consider a 4-gluon kernel for a finite number of colors and define some simple toy models for the configuration space dynamics, which are directly solvable with group theoretical methods. In particular we study the depencence of the spectrum of thesemodelswith respect to the number of colors andmake comparisons with the planar limit case. In the final part we move on the study of theories beyond the Standard Model, considering models built on AdS5 S5/Γ orbifold compactifications of the type IIB superstring, where Γ is the abelian group Zn. We present an appealing three family N = 0 SUSY model with n = 7 for the order of the orbifolding group. This result in a modified Pati–Salam Model which reduced to the StandardModel after symmetry breaking and has interesting phenomenological consequences for LHC.
Resumo:
The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating. The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.