7 resultados para Instrumental drift correction

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In case of severe osteoarthritis at the knee causing pain, deformity, and loss of stability and mobility, the clinicians consider that the substitution of these surfaces by means of joint prostheses. The objectives to be pursued by this surgery are: complete pain elimination, restoration of the normal physiological mobility and joint stability, correction of all deformities and, thus, of limping. The knee surgical navigation systems have bee developed in computer-aided surgery in order to improve the surgical final outcome in total knee arthroplasty. These systems provide the surgeon with quantitative and real-time information about each surgical action, like bone cut executions and prosthesis component alignment, by mean of tracking tools rigidly fixed onto the femur and the tibia. Nevertheless, there is still a margin of error due to the incorrect surgical procedures and to the still limited number of kinematic information provided by the current systems. Particularly, patello-femoral joint kinematics is not considered in knee surgical navigation. It is also unclear and, thus, a source of misunderstanding, what the most appropriate methodology is to study the patellar motion. In addition, also the knee ligamentous apparatus is superficially considered in navigated total knee arthroplasty, without taking into account how their physiological behavior is altered by this surgery. The aim of the present research work was to provide new functional and biomechanical assessments for the improvement of the surgical navigation systems for joint replacement in the human lower limb. This was mainly realized by means of the identification and development of new techniques that allow a thorough comprehension of the functioning of the knee joint, with particular attention to the patello-femoral joint and to the main knee soft tissues. A knee surgical navigation system with active markers was used in all research activities presented in this research work. Particularly, preliminary test were performed in order to assess the system accuracy and the robustness of a number of navigation procedures. Four studies were performed in-vivo on patients requiring total knee arthroplasty and randomly implanted by means of traditional and navigated procedures in order to check for the real efficacy of the latter with respect to the former. In order to cope with assessment of patello-femoral joint kinematics in the intact and replaced knees, twenty in-vitro tests were performed by using a prototypal tracking tool also for the patella. In addition to standard anatomical and articular recommendations, original proposals for defining the patellar anatomical-based reference frame and for studying the patello-femoral joint kinematics were reported and used in these tests. These definitions were applied to two further in-vitro tests in which, for the first time, also the implant of patellar component insert was fully navigated. In addition, an original technique to analyze the main knee soft tissues by means of anatomical-based fiber mappings was also reported and used in the same tests. The preliminary instrumental tests revealed a system accuracy within the millimeter and a good inter- and intra-observer repeatability in defining all anatomical reference frames. In in-vivo studies, the general alignments of femoral and tibial prosthesis components and of the lower limb mechanical axis, as measured on radiographs, was more satisfactory, i.e. within ±3°, in those patient in which total knee arthroplasty was performed by navigated procedures. As for in-vitro tests, consistent patello-femoral joint kinematic patterns were observed over specimens throughout the knee flexion arc. Generally, the physiological intact knee patellar motion was not restored after the implant. This restoration was successfully achieved in the two further tests where all component implants, included the patellar insert, were fully navigated, i.e. by means of intra-operative assessment of also patellar component positioning and general tibio-femoral and patello-femoral joint assessment. The tests for assessing the behavior of the main knee ligaments revealed the complexity of the latter and the different functional roles played by the several sub-bundles compounding each ligament. Also in this case, total knee arthroplasty altered the physiological behavior of these knee soft tissues. These results reveal in-vitro the relevance and the feasibility of the applications of new techniques for accurate knee soft tissues monitoring, patellar tracking assessment and navigated patellar resurfacing intra-operatively in the contest of the most modern operative techniques. This present research work gives a contribution to the much controversial knowledge on the normal and replaced of knee kinematics by testing the reported new methodologies. The consistence of these results provides fundamental information for the comprehension and improvements of knee orthopedic treatments. In the future, the reported new techniques can be safely applied in-vivo and also adopted in other joint replacements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD thesis describes the application of some instrumental analytical techniques suitable to the study of fundamental food products for the human diet, such as: extra virgin olive oil and dairy products. These products, widely spread in the market and with high nutritional values, are increasingly recognized healthy properties although their lipid fraction might contain some unfavorable components to the human health. The research activity has been structured in the following investigations: “Comparison of different techniques for trans fatty acids analysis” “Fatty acids analysis of outcrop milk cream samples, with particular emphasis on the content of Conjugated Linoleic Acid (CLA) and trans Fatty Acids (TFA), by using 100m high-polarity capillary column” “Evaluation of the oxidited fatty acids (OFA) content during the Parmigiano-Reggiano cheese seasoning” “Direct analysis of 4-desmethyl sterols and two dihydroxy triterpenes in saponified vegetal oils (olive oil and others) using liquid chromatography-mass spectrometry” “Quantitation of long chain poly-unsatured fatty acids (LC-PUFA) in base infant formulas by Gas Chromatography, and evaluation of the blending phases accuracy during their preparation” “Fatty acids composition of Parmigiano Reggiano cheese samples, with emphasis on trans isomers (TFA)”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the performances of the CMS Drift Tubes Local Trigger System of the CMS detector are studied. CMS is one of the general purpose experiments that will operate at the Large Hadron Collider at CERN. Results from data collected during the Cosmic Run At Four Tesla (CRAFT) commissioning exercise, a globally coordinated run period where the full experiment was involved and configured to detect cosmic rays crossing the CMS cavern, are presented. These include analyses on the precision and accuracy of the trigger reconstruction mechanism and measurement of the trigger efficiency. The description of a method to perform system synchronization is also reported, together with a comparison of the outcomes of trigger electronics and its software emulator code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consumer demand for natural, minimally processed, fresh like and functional food has lead to an increasing interest in emerging technologies. The aim of this PhD project was to study three innovative food processing technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum impregnation and pulsed electric field have been investigated through laboratory scale systems and semi-industrial pilot plants. Furthermore, analytical and sensory techniques have been developed to evaluate the quality of food and vegetable matrix obtained by traditional and emerging processes. Ultrasound was found to be a valuable technique to improve the freezing process of potatoes, anticipating the beginning of the nucleation process, mainly when applied during the supercooling phase. A study of the effects of pulsed electric fields on phenol and enzymatic profile of melon juice has been realized and the statistical treatment of data was carried out through a response surface method. Next, flavour enrichment of apple sticks has been realized applying different techniques, as atmospheric, vacuum, ultrasound technologies and their combinations. The second section of the thesis deals with the development of analytical methods for the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut bark extracts and olive mill waste water. The management of waste disposal in mill sector has been approached with the aim of reducing the amount of waste, and at the same time recovering valuable by-products, to be used in different industrial sectors. Finally, the sensory analysis of boiled potatoes has been carried out through the development of a quantitative descriptive procedure for the study of Italian and Mexican potato varieties. An update on flavour development in fresh and cooked potatoes has been realized and a sensory glossary, including general and specific definitions related to organic products, used in the European project Ecropolis, has been drafted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis work concerns X-ray spectrometry for both medical and space applications and is divided into two sections. The first section addresses an X-ray spectrometric system designed to study radiological beams and is devoted to the optimization of diagnostic procedures in medicine. A parametric semi-empirical model capable of efficiently reconstructing diagnostic X-ray spectra in 'middle power' computers was developed and tested. In addition, different silicon diode detectors were tested as real-time detectors in order to provide a real-time evaluation of the spectrum during diagnostic procedures. This project contributes to the field by presenting an improved simulation of a realistic X-ray beam emerging from a common X-ray tube with a complete and detailed spectrum that lends itself to further studies of added filtration, thus providing an optimized beam for different diagnostic applications in medicine. The second section describes the preliminary tests that have been carried out on the first version of an Application Specific Integrated Circuit (ASIC), integrated with large area position-sensitive Silicon Drift Detector (SDD) to be used on board future space missions. This technology has been developed for the ESA project: LOFT (Large Observatory for X-ray Timing), a new medium-class space mission that the European Space Agency has been assessing since February of 2011. The LOFT project was proposed as part of the Cosmic Vision Program (2015-2025).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food suppliers currently measure apple quality considering basic pomological descriptors. Sensory analysis is expensive, does not permit to analyse many samples, and cannot be implemented for measuring quality properties in real time. However, sensory analysis is the best way to precisely describe food eating quality, since it is able to define, measure, and explain what is really perceivable by human senses and using a language that closely reflects the consumers’ perception. On the basis of such observations, we developed a detailed protocol for apple sensory profiling by descriptive sensory analysis and instrumental measurements. The collected sensory data were validated by applying rigorous scientific criteria for sensory analysis. The method was then applied for studying sensory properties of apples and their changes in relation to different pre- and post-harvest factors affecting fruit quality, and demonstrated to be able to discriminate fruit varieties and to highlight differences in terms of sensory properties. The instrumental measurements confirmed such results. Moreover, the correlation between sensory and instrumental data was studied, and a new effective approach was defined for the reliable prediction of sensory properties by instrumental characterisation. It is therefore possible to propose the application of this sensory-instrumental tool to all the stakeholders involved in apple production and marketing, to have a reliable description of apple fruit quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extensive study of the morphology and the dynamics of the equatorial ionosphere over South America is presented here. A multi parametric approach is used to describe the physical characteristics of the ionosphere in the regions where the combination of the thermospheric electric field and the horizontal geomagnetic field creates the so-called Equatorial Ionization Anomalies. Ground based measurements from GNSS receivers are used to link the Total Electron Content (TEC), its spatial gradients and the phenomenon known as scintillation that can lead to a GNSS signal degradation or even to a GNSS signal ‘loss of lock’. A new algorithm to highlight the features characterizing the TEC distribution is developed in the framework of this thesis and the results obtained are validated and used to improve the performance of a GNSS positioning technique (long baseline RTK). In addition, the correlation between scintillation and dynamics of the ionospheric irregularities is investigated. By means of a software, here implemented, the velocity of the ionospheric irregularities is evaluated using high sampling rate GNSS measurements. The results highlight the parallel behaviour of the amplitude scintillation index (S4) occurrence and the zonal velocity of the ionospheric irregularities at least during severe scintillations conditions (post-sunset hours). This suggests that scintillations are driven by TEC gradients as well as by the dynamics of the ionospheric plasma. Finally, given the importance of such studies for technological applications (e.g. GNSS high-precision applications), a validation of the NeQuick model (i.e. the model used in the new GALILEO satellites for TEC modelling) is performed. The NeQuick performance dramatically improves when data from HF radar sounding (ionograms) are ingested. A custom designed algorithm, based on the image recognition technique, is developed to properly select the ingested data, leading to further improvement of the NeQuick performance.