11 resultados para Input-Output Modelling
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Until few years ago, 3D modelling was a topic confined into a professional environment. Nowadays technological innovations, the 3D printer among all, have attracted novice users to this application field. This sudden breakthrough was not supported by adequate software solutions. The 3D editing tools currently available do not assist the non-expert user during the various stages of generation, interaction and manipulation of 3D virtual models. This is mainly due to the current paradigm that is largely supported by two-dimensional input/output devices and strongly affected by obvious geometrical constraints. We have identified three main phases that characterize the creation and management of 3D virtual models. We investigated these directions evaluating and simplifying the classic editing techniques in order to propose more natural and intuitive tools in a pure 3D modelling environment. In particular, we focused on freehand sketch-based modelling to create 3D virtual models, interaction and navigation in a 3D modelling environment and advanced editing tools for free-form deformation and objects composition. To pursuing these goals we wondered how new gesture-based interaction technologies can be successfully employed in a 3D modelling environments, how we could improve the depth perception and the interaction in 3D environments and which operations could be developed to simplify the classical virtual models editing paradigm. Our main aims were to propose a set of solutions with which a common user can realize an idea in a 3D virtual model, drawing in the air just as he would on paper. Moreover, we tried to use gestures and mid-air movements to explore and interact in 3D virtual environment, and we studied simple and effective 3D form transformations. The work was carried out adopting the discrete representation of the models, thanks to its intuitiveness, but especially because it is full of open challenges.
Resumo:
Durante il periodo di dottorato, l’attività di ricerca di cui mi sono occupato è stata finalizzata allo sviluppo di metodologie per la diagnostica e l’analisi delle prestazioni di un motore automobilistico. Un primo filone di ricerca è relativo allo sviluppo di strategie per l’identificazione delle mancate combustioni (misfires) in un motore a benzina. La sperimentazione si è svolta nella sala prove della Facoltà di Ingegneria dell’Università di Bologna, nei quali è presente un motore Fiat 1.200 Fire, accoppiato ad un freno a correnti parassite, e comandato da una centralina virtuale, creata mediante un modello Simulink, ed interfacciata al motore tramite una scheda di input/output dSpace. Per quanto riguarda la campagna sperimentale, sono stati realizzati delle prove al banco in diverse condizioni di funzionamento (sia stazionarie, che transitorie), durante le quali sono stati indotti dei misfires, sia singoli che multipli. Durante tali test sono stati registrati i segnali provenienti sia dalla ruota fonica usata per il controllo motore (che, nel caso in esame, era affacciata al volano), sia da quella collegata al freno a correnti parassite. Partendo da tali segnali, ed utilizzando un modello torsionale del sistema motoregiunto-freno, è possibile ottenere una stima sia della coppia motrice erogata dal motore, sia della coppia resistente dissipata dal freno. La prontezza di risposta di tali osservatori è tale da garantirci la possibilità di effettuare una diagnosi misfire. In particolare, si è visto che l’indice meglio correlato ala mancata combustione risultaessere la differenza fra la coppia motrice e la coppia resistente; tale indice risulta inoltre essere quello più semplice da calibrare sperimentalmente, in quanto non dipende dalle caratteristiche del giunto, ma solamente dalle inerzie del sistema. Una seconda attività della quale mi sono occupato è relativa alla stima della coppia indicata in un motore diesel automobilistico. A tale scopo, è stata realizzata una campagna sperimentale presso i laboratori della Magneti Marelli Powertrain (Bologna), nella quale sono state effettuati test in molteplici punti motori, sia in condizioni di funzionamento “nominale”, sia variando artificiosamente alcuni dei fattori di controllo (quali Start of Injection, pressione nel rail e, nei punti ove è stato possibile, tasso di EGR e pressione di sovralimentazione), sia effettuando degli sbilanciamenti di combustibile fra un cilindro e l’altro. Utilizzando il solo segnale proveniente da una ruota fonica posta sul lato motore, e sfruttando un modello torsionale simile a quello utilizzato nella campagna di prove relativa alla diagnosi del misfire, è possibile correlare la componente armonica con frequenza di combustione della velocità all’armonica di pari ordine della coppia indicata; una volta stimata tale componente in frequenza, mediante un’analisi di tipo statistico, è possibile eseguire una stima della coppia indicata erogata dal motore. A completamento dell’algoritmo, sfruttando l’analisi delle altre componenti armoniche presenti nel segnale, è possibile avere una stima dello sbilanciamento di coppia fra i vari cilindri. Per la verifica dei risultati ottenuti, sono stati acquisiti i segnali di pressione provenienti da tutti e quattro i cilindri del motore in esame.
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
Introduction and aims of the research Nitric oxide (NO) and endocannabinoids (eCBs) are major retrograde messengers, involved in synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in many brain areas (including hippocampus and neocortex), as well as in learning and memory processes. NO is synthesized by NO synthase (NOS) in response to increased cytosolic Ca2+ and mainly exerts its functions through soluble guanylate cyclase (sGC) and cGMP production. The main target of cGMP is the cGMP-dependent protein kinase (PKG). Activity-dependent release of eCBs in the CNS leads to the activation of the Gαi/o-coupled cannabinoid receptor 1 (CB1) at both glutamatergic and inhibitory synapses. The perirhinal cortex (Prh) is a multimodal associative cortex of the temporal lobe, critically involved in visual recognition memory. LTD is proposed to be the cellular correlate underlying this form of memory. Cholinergic neurotransmission has been shown to play a critical role in both visual recognition memory and LTD in Prh. Moreover, visual recognition memory is one of the main cognitive functions impaired in the early stages of Alzheimer’s disease. The main aim of my research was to investigate the role of NO and ECBs in synaptic plasticity in rat Prh and in visual recognition memory. Part of this research was dedicated to the study of synaptic transmission and plasticity in a murine model (Tg2576) of Alzheimer’s disease. Methods Field potential recordings. Extracellular field potential recordings were carried out in horizontal Prh slices from Sprague-Dawley or Dark Agouti juvenile (p21-35) rats. LTD was induced with a single train of 3000 pulses delivered at 5 Hz (10 min), or via bath application of carbachol (Cch; 50 μM) for 10 min. LTP was induced by theta-burst stimulation (TBS). In addition, input/output curves and 5Hz-LTD were carried out in Prh slices from 3 month-old Tg2576 mice and littermate controls. Behavioural experiments. The spontaneous novel object exploration task was performed in intra-Prh bilaterally cannulated adult Dark Agouti rats. Drugs or vehicle (saline) were directly infused into the Prh 15 min before training to verify the role of nNOS and CB1 in visual recognition memory acquisition. Object recognition memory was tested at 20 min and 24h after the end of the training phase. Results Electrophysiological experiments in Prh slices from juvenile rats showed that 5Hz-LTD is due to the activation of the NOS/sGC/PKG pathway, whereas Cch-LTD relies on NOS/sGC but not PKG activation. By contrast, NO does not appear to be involved in LTP in this preparation. Furthermore, I found that eCBs are involved in LTP induction, but not in basal synaptic transmission, 5Hz-LTD and Cch-LTD. Behavioural experiments demonstrated that the blockade of nNOS impairs rat visual recognition memory tested at 24 hours, but not at 20 min; however, the blockade of CB1 did not affect visual recognition memory acquisition tested at both time points specified. In three month-old Tg2576 mice, deficits in basal synaptic transmission and 5Hz-LTD were observed compared to littermate controls. Conclusions The results obtained in Prh slices from juvenile rats indicate that NO and CB1 play a role in the induction of LTD and LTP, respectively. These results are confirmed by the observation that nNOS, but not CB1, is involved in visual recognition memory acquisition. The preliminary results obtained in the murine model of Alzheimer’s disease indicate that deficits in synaptic transmission and plasticity occur very early in Prh; further investigations are required to characterize the molecular mechanisms underlying these deficits.
Resumo:
One of the main problems recognized in sustainable development goals and sustainable agricultural objectives is Climate change. Farming contributes significantly to the overall Greenhouse gases (GHG) in the atmosphere, which is approximately 10-12 percent of total GHG emissions, but when taking in consideration also land-use change, including deforestation driven by agricultural expansion for food, fiber and fuel the number rises to approximately 30 percent (Smith et. al., 2007). There are two distinct methodological approaches for environmental impact assessment; Life Cycle Assessment (a bottom up approach) and Input-Output Analysis (a top down approach). The two methodologies differ significantly but there is not an immediate choice between them if the scope of the study is on a sectorial level. Instead, as an alternative, hybrid approaches which combine these two approaches have emerged. The aim of this study is to analyze in a greater detail the agricultural sectors contribution to Climate change caused by the consumption of food products. Hence, to identify the food products that have the greatest impact through their life cycle, identifying their hotspots and evaluating the mitigation possibilities for the same. At the same time evaluating methodological possibilities and models to be applied for this purpose both on a EU level and on a country level (Italy).
Resumo:
The market’s challenges bring firms to collaborate with other organizations in order to create Joint Ventures, Alliances and Consortia that are defined as “Interorganizational Networks” (IONs) (Provan, Fish and Sydow; 2007). Some of these IONs are managed through a shared partecipant governance (Provan and Kenis, 2008): a team composed by entrepreneurs and/or directors of each firm of an ION. The research is focused on these kind of management teams and it is based on an input-process-output model: some input variables (work group’s diversity, intra-team's friendship network density) have a direct influence on the process (team identification, shared leadership, interorganizational trust, team trust and intra-team's communication network density), which influence some team outputs, individual innovation behaviors and team effectiveness (team performance, work group satisfaction and ION affective commitment). Data was collected on a sample of 101 entrepreneurs grouped in 28 ION’s government teams and the research hypotheses are tested trough the path analysis and the multilevel models. As expected trust in team and shared leadership are positively and directly related to team effectiveness while team identification and interorganizational trust are indirectly related to the team outputs. The friendship network density among the team’s members has got positive effects on the trust in team and on the communication network density, and also, through the communication network density it improves the level of the teammates ION affective commitment. The shared leadership and its effects on the team effectiveness are fostered from higher level of team identification and weakened from higher level of work group diversity, specifically gender diversity. Finally, the communication network density and shared leadership at the individual level are related to the frequency of individual innovative behaviors. The dissertation’s results give a wider and more precise indication about the management of interfirm network through “shared” form of governance.
Resumo:
This thesis deals with two important research aspects concerning radio frequency (RF) microresonators and switches. First, a new approach for compact modeling and simulation of these devices is presented. Then, a combined process flow for their simultaneous fabrication on a SOI substrate is proposed. Compact models for microresonators and switches are extracted by applying mathematical model order reduction (MOR) to the devices finite element (FE) description in ANSYS c° . The behaviour of these devices includes forms of nonlinearities. However, an approximation in the creation of the FE model is introduced, which enables the use of linear model order reduction. Microresonators are modeled with the introduction of transducer elements, which allow for direct coupling of the electrical and mechanical domain. The coupled system element matrices are linearized around an operating point and reduced. The resulting macromodel is valid for small signal analysis around the bias point, such as harmonic pre-stressed analysis. This is extremely useful for characterizing the frequency response of resonators. Compact modelling of switches preserves the nonlinearity of the device behaviour. Nonlinear reduced order models are obtained by reducing the number of nonlinearities in the system and handling them as input to the system. In this way, the system can be reduced using linear MOR techniques and nonlinearities are introduced directly in the reduced order model. The reduction of the number of system nonlinearities implies the approximation of all distributed forces in the model with lumped forces. Both for microresonators and switches, a procedure for matrices extraction has been developed so that reduced order models include the effects of electrical and mechanical pre-stress. The extraction process is fast and can be done automatically from ANSYS binary files. The method has been applied for the simulation of several devices both at devices and circuit level. Simulation results have been compared with full model simulations, and, when available, experimental data. Reduced order models have proven to conserve the accuracy of finite element method and to give a good description of the overall device behaviour, despite the introduced approximations. In addition, simulation is very fast, both at device and circuit level. A combined process-flow for the integrated fabrication of microresonators and switches has been defined. For this purpose, two processes that are optimized for the independent fabrication of these devices are merged. The major advantage of this process is the possibility to create on-chip circuit blocks that include both microresonators and switches. An application is, for example, aswitched filter bank for wireless transceiver. The process for microresonators fabrication is characterized by the use of silicon on insulator (SOI) wafers and on a deep reactive ion etching (DRIE) step for the creation of the vibrating structures in single-crystal silicon and the use of a sacrificial oxide layer for the definition of resonator to electrode distance. The fabrication of switches is characterized by the use of two different conductive layers for the definition of the actuation electrodes and by the use of a photoresist as a sacrificial layer for the creation of the suspended structure. Both processes have a gold electroplating step, for the creation of the resonators electrodes, transmission lines and suspended structures. The combined process flow is designed such that it conserves the basic properties of the original processes. Neither the performance of the resonators nor the performance of the switches results affected by the simultaneous fabrication. Moreover, common fabrication steps are shared, which allows for cheaper and faster fabrication.
Resumo:
Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data.
Resumo:
Basic concepts and definitions relative to Lagrangian Particle Dispersion Models (LPDMs)for the description of turbulent dispersion are introduced. The study focusses on LPDMs that use as input, for the large scale motion, fields produced by Eulerian models, with the small scale motions described by Lagrangian Stochastic Models (LSMs). The data of two different dynamical model have been used: a Large Eddy Simulation (LES) and a General Circulation Model (GCM). After reviewing the small scale closure adopted by the Eulerian model, the development and implementation of appropriate LSMs is outlined. The basic requirement of every LPDM used in this work is its fullfillment of the Well Mixed Condition (WMC). For the dispersion description in the GCM domain, a stochastic model of Markov order 0, consistent with the eddy-viscosity closure of the dynamical model, is implemented. A LSM of Markov order 1, more suitable for shorter timescales, has been implemented for the description of the unresolved motion of the LES fields. Different assumptions on the small scale correlation time are made. Tests of the LSM on GCM fields suggest that the use of an interpolation algorithm able to maintain an analytical consistency between the diffusion coefficient and its derivative is mandatory if the model has to satisfy the WMC. Also a dynamical time step selection scheme based on the diffusion coefficient shape is introduced, and the criteria for the integration step selection are discussed. Absolute and relative dispersion experiments are made with various unresolved motion settings for the LSM on LES data, and the results are compared with laboratory data. The study shows that the unresolved turbulence parameterization has a negligible influence on the absolute dispersion, while it affects the contribution of the relative dispersion and meandering to absolute dispersion, as well as the Lagrangian correlation.
Resumo:
This thesis presents a new Artificial Neural Network (ANN) able to predict at once the main parameters representative of the wave-structure interaction processes, i.e. the wave overtopping discharge, the wave transmission coefficient and the wave reflection coefficient. The new ANN has been specifically developed in order to provide managers and scientists with a tool that can be efficiently used for design purposes. The development of this ANN started with the preparation of a new extended and homogeneous database that collects all the available tests reporting at least one of the three parameters, for a total amount of 16’165 data. The variety of structure types and wave attack conditions in the database includes smooth, rock and armour unit slopes, berm breakwaters, vertical walls, low crested structures, oblique wave attacks. Some of the existing ANNs were compared and improved, leading to the selection of a final ANN, whose architecture was optimized through an in-depth sensitivity analysis to the training parameters of the ANN. Each of the selected 15 input parameters represents a physical aspect of the wave-structure interaction process, describing the wave attack (wave steepness and obliquity, breaking and shoaling factors), the structure geometry (submergence, straight or non-straight slope, with or without berm or toe, presence or not of a crown wall), or the structure type (smooth or covered by an armour layer, with permeable or impermeable core). The advanced ANN here proposed provides accurate predictions for all the three parameters, and demonstrates to overcome the limits imposed by the traditional formulae and approach adopted so far by some of the existing ANNs. The possibility to adopt just one model to obtain a handy and accurate evaluation of the overall performance of a coastal or harbor structure represents the most important and exportable result of the work.
Resumo:
Forest models are tools for explaining and predicting the dynamics of forest ecosystems. They simulate forest behavior by integrating information on the underlying processes in trees, soil and atmosphere. Bayesian calibration is the application of probability theory to parameter estimation. It is a method, applicable to all models, that quantifies output uncertainty and identifies key parameters and variables. This study aims at testing the Bayesian procedure for calibration to different types of forest models, to evaluate their performances and the uncertainties associated with them. In particular,we aimed at 1) applying a Bayesian framework to calibrate forest models and test their performances in different biomes and different environmental conditions, 2) identifying and solve structure-related issues in simple models, and 3) identifying the advantages of additional information made available when calibrating forest models with a Bayesian approach. We applied the Bayesian framework to calibrate the Prelued model on eight Italian eddy-covariance sites in Chapter 2. The ability of Prelued to reproduce the estimated Gross Primary Productivity (GPP) was tested over contrasting natural vegetation types that represented a wide range of climatic and environmental conditions. The issues related to Prelued's multiplicative structure were the main topic of Chapter 3: several different MCMC-based procedures were applied within a Bayesian framework to calibrate the model, and their performances were compared. A more complex model was applied in Chapter 4, focusing on the application of the physiology-based model HYDRALL to the forest ecosystem of Lavarone (IT) to evaluate the importance of additional information in the calibration procedure and their impact on model performances, model uncertainties, and parameter estimation. Overall, the Bayesian technique proved to be an excellent and versatile tool to successfully calibrate forest models of different structure and complexity, on different kind and number of variables and with a different number of parameters involved.