45 resultados para Innovative monitoring techniques

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lo scopo di questo lavoro di tesi è la caratterizzazione dei prodotti di ossidazione di diversi fenoli idrofili contenuti nell’olio vergine d’oliva come idrossitirosolo, tirosolo e la forma dialdeidica dell’acido decarbossimetil elenolico legato all’idrossitirosolo, e la loro identificazione nel prodotto durante la conservazione. L’obiettivo della ricerca è trovare degli indici analitici che possono essere usati sia come marker di “freschezza” dell’olio vergine di oliva sia nella valutazione della “shelf life” del prodotto stesso. Due sistemi di ossidazione sono stati usati per ossidare le molecole sopracitate: ossidazione enzimatica e ossidazione di Fenton. I prodotti di ossidazione sono stati identificati come chinoni, dimeri e acidi.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Milk and dairy products are important source of bioactive compounds useful to satisfy the nutritional and physiological needs of any newborns of mammalian species and useful to guarantee adequate growth and development of infants as well as provide a complete nourishment of adults. Physico-chemical, nutritional and organoleptic properties of the main constituents and the “minor” components have a crucial role in the quality of milk and milk products. Although in the past decades dietary milk fat was often regarded as harmful for the human health, recent researches suggest that milk contains specific fatty acids with nutritional and physiological health benefits. For these reasons, a major attention is given to the quantity and quality of total fat intake. In the recent years, as a result of the new concept of multifunctional agriculture and the changing behaviours about diet, consumer demands in favor of high-quality, security and safety dairy products are increased. Moreover, milk proteins and milk-derived bioactive peptides are recognized to have a high nutritive value, several health-promoting functional activities and excellent technological properties. Accordingly, growing interest in the development of functional dairy products and preparation of infant formulae for babies who cannot be breast-fed, has been give in order to meet the specific consumer’s requests. This manuscript presents the main results obtained during my PhD research aimed to evaluate the main bioactive lipids and proteins in milk and dairy products using innovative analytical techniques. The experimental section of this manuscript is divided in two sections where are reported the main results obtained during my research activities on dairy products and human milks in order to characterize their bioactive compounds for functional food applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The frontline management of non-oncogene addicted non-small cell lung cancer (NSCLC) involves immunotherapy (ICI) alone or combined with chemotherapy (CT-ICI). As therapeutic options expand, refining NSCLC genotyping gains paramount importance. The dynamic landscape of KRAS-positive NSCLC presents a spectrum of treatment options, including ICI, targeted therapy, and combination strategies currently under investigation. Methods: The two-year RASLUNG project, featuring both retrospective and prospective cohorts, aimed to analyze the predictive and prognostic impact of KRAS mutations on tumor tissue and circulating DNA (ctDNA). Secondary objectives included assessing the roles of co-mutations and longitudinal changes in KRAS mutant copies concerning treatment response and survival outcomes. An external validation study confirmed the prognostic or predictive significance of co-mutations. Results: In the prospective cohort (n=24), patients with liver metastases exhibited significantly elevated ctDNA levels(p=0.01), while those with >3 metastatic sites showed increased Allele Frequency (AF) (P=0.002). Median overall survival (OS) was 7.5 months, progression-free survival (PFS) was 4.0 months, and the objective response rate (ORR) was 33.3%. Higher AF correlated with an increased risk of death (HR 1.04, p = 0.03), though not progression. Notably, a reduction in plasma DNA levels was significantly associated with objective response(p=0.01). In the retrospective cohort, KRAS and STK11 mutations co-occurred in 14/21 patients (p=0.053). STK11 mutations were independently detrimental to OS (HR 1.97, p=0.025) after adjusting for various factors. KRAS tissue AF did not correlate with OS or PFS. Within the validation dataset, STK11 mutations were significantly associated with an increased risk of death in univariate (HR 2.01, p<0.001) and multivariate models (HR 1.66, p=0.001) after adjustments. Conclusion: The RAS-Lung Project, employing innovative genotyping techniques, underscores the significance of comprehensive NSCLC genotyping. Tailored next-generation sequencing (NGS) and ctDNA monitoring may offer potential benefits in navigating the evolving landscape of KRAS-positive NSCLC treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Throughout the alpine domain, shallow landslides represent a serious geologic hazard, often causing severe damages to infrastructures, private properties, natural resources and in the most catastrophic events, threatening human lives. Landslides are a major factor of landscape evolution in mountainous and hilly regions and represent a critical issue for mountainous land management, since they cause loss of pastoral lands. In several alpine contexts, shallow landsliding distribution is strictly connected to the presence and condition of vegetation on the slopes. With the aid of high-resolution satellite images, it's possible to divide automatically the mountainous territory in land cover classes, which contribute with different magnitude to the stability of the slopes. The aim of this research is to combine EO (Earth Observation) land cover maps with ground-based measurements of the land cover properties. In order to achieve this goal, a new procedure has been developed to automatically detect grass mantle degradation patterns from satellite images. Moreover, innovative surveying techniques and instruments are tested to measure in situ the shear strength of grass mantle and the geomechanical and geotechnical properties of these alpine soils. Shallow landsliding distribution is assessed with the aid of physically based models, which use the EO-based map to distribute the resistance parameters across the landscape.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The safety systems of nuclear power plants rely on low-voltage power, instrumentation and control cables. Inside the containment area, cables operate in harsh environments, characterized by relatively high temperature and gamma-irradiation. As these cables are related to fundamental safety systems, they must be able to withstand unexpected accident conditions and, therefore, their condition assessment is of utmost importance as plants age and lifetime extensions are required. Nowadays, the integrity and functionality of these cables are monitored mainly through destructive test which requires specific laboratory. The investigation of electrical aging markers which can provide information about the state of the cable by non-destructive testing methods would improve significantly the present diagnostic techniques. This work has been made within the framework of the ADVANCE (Aging Diagnostic and Prognostics of Low-Voltage I\&C Cables) project, a FP7 European program. This Ph.D. thesis aims at studying the impact of aging on cable electrical parameters, in order to understand the evolution of the electrical properties associated with cable degradation. The identification of suitable aging markers requires the comparison of the electrical property variation with the physical/chemical degradation mechanisms of polymers for different insulating materials and compositions. The feasibility of non-destructive electrical condition monitoring techniques as potential substitutes for destructive methods will be finally discussed studying the correlation between electrical and mechanical properties. In this work, the electrical properties of cable insulators are monitored and characterized mainly by dielectric spectroscopy, polarization/depolarization current analysis and space charge distribution. Among these techniques, dielectric spectroscopy showed the most promising results; by means of dielectric spectroscopy it is possible to identify the frequency range where the properties are more sensitive to aging. In particular, the imaginary part of permittivity at high frequency, which is related to oxidation, has been identified as the most suitable aging marker based on electrical quantities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tumors involving bone and soft tissues are extremely challenging situations. With the recent advances of multi-modal treatment, not only the type of surgery has moved from amputation to limb-sparing procedures, but also the survivorship has improved considerably and reconstructive techniques have the goal to allow a considerably higher quality of life. In bone reconstruction, tissue engineering strategies are the main area of research. Re-vascularization and re-vitalisation of a massive allograft would considerably improve the outcome of biological reconstructions. Using a rabbit animal model, in this study we showed that, by implanting a vascular pedicle inside a weight bearing massive cortical allograft, the bone regeneration inside the allograft was higher compared to the non-vascularized implants, given the patency of the vascular pedicle. Improvement in the animal model and the addition of Stem Cells and Growth factors will allow a further improvement in the results. In soft tissue tumors, free and pedicled flaps have been proven to be of great help as reconstruction strategies. In this study we analyzed the functional and overall outcome of 14 patients who received a re-innervated vascularized flap. We have demonstrated that the use of the innovative technique of motor re-innervated muscular flaps is effective when the resection involves important functional compartments of the upper or lower limb, with no increase of post-operative complications. Although there was no direct comparison between this type of reconstruction and the standard non-innervated reconstruction, we underlined the remarkable high overall functional scores and patient satisfaction following this procedure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The growing substrate of the putting greens is considered a key factor for a healthy turf ecosystem. Actually detailed study on the effects of growth promoting bacteria and biostimulants on a professional sport turf are very limited. This thesis aimed to study the effectiveness of different microorganisms and biostimulants in order to improve the knowledge relative to the relationship between the beneficial microflora and root apparatus of sport turfs. The research project was divided in three principal steps: Initially, commercial products based on biostimulants and microorganisms were tested on a Lolium perenne L. essence grown in a controlled-environment. The principal evaluations were the study of the habitus of plants, biomass production and length of leaves and roots. Were studied the capacity of colonization of microorganisms within root tissues and rhizosphere. In the second step were developed two different biostimulant solutions based on effective microorganisms, mycorrhizae and humic acids. This test was conducted both on an Agrostis stolonifera putting green (Modena Golf & Country Club) in a semi-field condition and within a growth chamber on a Lolium perenne L. essence. Fungicide and chemicals applications were suspended in order to assess the effectiveness of the inoculants for nutrition and control of pests. In the last step, different microorganism mixes and biostimulants were tested on an experimental putting green in the Turf Research Center (TRC) (Virginia Tech, United States) in a real managing situation. The effects of different treatments were studied maintaining all chemicals and mechanicals managements scheduled during a sport season. Both growth-chamber and field results confirmed the capacity of microorganisms based biostimulants to promote the physiologic conditions of the plants, improve the growth of the roots and enhance the aesthetic performance of the turf. Molecular analysis confirmed the capacity of microorganisms to colonize the root tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) offer a new solution for distributed monitoring, processing and communication. First of all, the stringent energy constraints to which sensing nodes are typically subjected. WSNs are often battery powered and placed where it is not possible to recharge or replace batteries. Energy can be harvested from the external environment but it is a limited resource that must be used efficiently. Energy efficiency is a key requirement for a credible WSNs design. From the power source's perspective, aggressive energy management techniques remain the most effective way to prolong the lifetime of a WSN. A new adaptive algorithm will be presented, which minimizes the consumption of wireless sensor nodes in sleep mode, when the power source has to be regulated using DC-DC converters. Another important aspect addressed is the time synchronisation in WSNs. WSNs are used for real-world applications where physical time plays an important role. An innovative low-overhead synchronisation approach will be presented, based on a Temperature Compensation Algorithm (TCA). The last aspect addressed is related to self-powered WSNs with Energy Harvesting (EH) solutions. Wireless sensor nodes with EH require some form of energy storage, which enables systems to continue operating during periods of insufficient environmental energy. However, the size of the energy storage strongly restricts the use of WSNs with EH in real-world applications. A new approach will be presented, which enables computation to be sustained during intermittent power supply. The discussed approaches will be used for real-world WSN applications. The first presented scenario is related to the experience gathered during an European Project (3ENCULT Project), regarding the design and implementation of an innovative network for monitoring heritage buildings. The second scenario is related to the experience with Telecom Italia, regarding the design of smart energy meters for monitoring the usage of household's appliances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis we focus on the analysis and interpretation of time dependent deformations recorded through different geodetic methods. Firstly, we apply a variational Bayesian Independent Component Analysis (vbICA) technique to GPS daily displacement solutions, to separate the postseismic deformation that followed the mainshocks of the 2016-2017 Central Italy seismic sequence from the other, hydrological, deformation sources. By interpreting the signal associated with the postseismic relaxation, we model an afterslip distribution on the faults involved by the mainshocks consistent with the co-seismic models available in literature. We find evidences of aseismic slip on the Paganica fault, responsible for the Mw 6.1 2009 L’Aquila earthquake, highlighting the importance of aseismic slip and static stress transfer to properly model the recurrence of earthquakes on nearby fault segments. We infer a possible viscoelastic relaxation of the lower crust as a contributing mechanism to the postseismic displacements. We highlight the importance of a proper separation of the hydrological signals for an accurate assessment of the tectonic processes, especially in cases of mm-scale deformations. Contextually, we provide a physical explanation to the ICs associated with the observed hydrological processes. In the second part of the thesis, we focus on strain data from Gladwin Tensor Strainmeters, working on the instruments deployed in Taiwan. We develop a novel approach, completely data driven, to calibrate these strainmeters. We carry out a joint analysis of geodetic (strainmeters, GPS and GRACE products) and hydrological (rain gauges and piezometers) data sets, to characterize the hydrological signals in Southern Taiwan. Lastly, we apply the calibration approach here proposed to the strainmeters recently installed in Central Italy. We provide, as an example, the detection of a storm that hit the Umbria-Marche regions (Italy), demonstrating the potential of strainmeters in following the dynamics of deformation processes with limited spatio-temporal signature

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protected crop production is a modern and innovative approach to cultivating plants in a controlled environment to optimize growth, yield, and quality. This method involves using structures such as greenhouses or tunnels to create a sheltered environment. These productive solutions are characterized by a careful regulation of variables like temperature, humidity, light, and ventilation, which collectively contribute to creating an optimal microclimate for plant growth. Heating, cooling, and ventilation systems are used to maintain optimal conditions for plant growth, regardless of external weather fluctuations. Protected crop production plays a crucial role in addressing challenges posed by climate variability, population growth, and food security. Similarly, animal husbandry involves providing adequate nutrition, housing, medical care and environmental conditions to ensure animal welfare. Then, sustainability is a critical consideration in all forms of agriculture, including protected crop and animal production. Sustainability in animal production refers to the practice of producing animal products in a way that minimizes negative impacts on the environment, promotes animal welfare, and ensures the long-term viability of the industry. Then, the research activities performed during the PhD can be inserted exactly in the field of Precision Agriculture and Livestock farming. Here the focus is on the computational fluid dynamic (CFD) approach and environmental assessment applied to improve yield, resource efficiency, environmental sustainability, and cost savings. It represents a significant shift from traditional farming methods to a more technology-driven, data-driven, and environmentally conscious approach to crop and animal production. On one side, CFD is powerful and precise techniques of computer modeling and simulation of airflows and thermo-hygrometric parameters, that has been applied to optimize the growth environment of crops and the efficiency of ventilation in pig barns. On the other side, the sustainability aspect has been investigated and researched in terms of Life Cycle Assessment analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machines with moving parts give rise to vibrations and consequently noise. The setting up and the status of each machine yield to a peculiar vibration signature. Therefore, a change in the vibration signature, due to a change in the machine state, can be used to detect incipient defects before they become critical. This is the goal of condition monitoring, in which the informations obtained from a machine signature are used in order to detect faults at an early stage. There are a large number of signal processing techniques that can be used in order to extract interesting information from a measured vibration signal. This study seeks to detect rotating machine defects using a range of techniques including synchronous time averaging, Hilbert transform-based demodulation, continuous wavelet transform, Wigner-Ville distribution and spectral correlation density function. The detection and the diagnostic capability of these techniques are discussed and compared on the basis of experimental results concerning gear tooth faults, i.e. fatigue crack at the tooth root and tooth spalls of different sizes, as well as assembly faults in diesel engine. Moreover, the sensitivity to fault severity is assessed by the application of these signal processing techniques to gear tooth faults of different sizes.