4 resultados para Initial stresses
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The thesis studies the economic and financial conditions of Italian households, by using microeconomic data of the Survey on Household Income and Wealth (SHIW) over the period 1998-2006. It develops along two lines of enquiry. First it studies the determinants of households holdings of assets and liabilities and estimates their correlation degree. After a review of the literature, it estimates two non-linear multivariate models on the interactions between assets and liabilities with repeated cross-sections. Second, it analyses households financial difficulties. It defines a quantitative measure of financial distress and tests, by means of non-linear dynamic probit models, whether the probability of experiencing financial difficulties is persistent over time. Chapter 1 provides a critical review of the theoretical and empirical literature on the estimation of assets and liabilities holdings, on their interactions and on households net wealth. The review stresses the fact that a large part of the literature explain households debt holdings as a function, among others, of net wealth, an assumption that runs into possible endogeneity problems. Chapter 2 defines two non-linear multivariate models to study the interactions between assets and liabilities held by Italian households. Estimation refers to a pooling of cross-sections of SHIW. The first model is a bivariate tobit that estimates factors affecting assets and liabilities and their degree of correlation with results coherent with theoretical expectations. To tackle the presence of non normality and heteroskedasticity in the error term, generating non consistent tobit estimators, semi-parametric estimates are provided that confirm the results of the tobit model. The second model is a quadrivariate probit on three different assets (safe, risky and real) and total liabilities; the results show the expected patterns of interdependence suggested by theoretical considerations. Chapter 3 reviews the methodologies for estimating non-linear dynamic panel data models, drawing attention to the problems to be dealt with to obtain consistent estimators. Specific attention is given to the initial condition problem raised by the inclusion of the lagged dependent variable in the set of explanatory variables. The advantage of using dynamic panel data models lies in the fact that they allow to simultaneously account for true state dependence, via the lagged variable, and unobserved heterogeneity via individual effects specification. Chapter 4 applies the models reviewed in Chapter 3 to analyse financial difficulties of Italian households, by using information on net wealth as provided in the panel component of the SHIW. The aim is to test whether households persistently experience financial difficulties over time. A thorough discussion is provided of the alternative approaches proposed by the literature (subjective/qualitative indicators versus quantitative indexes) to identify households in financial distress. Households in financial difficulties are identified as those holding amounts of net wealth lower than the value corresponding to the first quartile of net wealth distribution. Estimation is conducted via four different methods: the pooled probit model, the random effects probit model with exogenous initial conditions, the Heckman model and the recently developed Wooldridge model. Results obtained from all estimators accept the null hypothesis of true state dependence and show that, according with the literature, less sophisticated models, namely the pooled and exogenous models, over-estimate such persistence.
Resumo:
Piezoelectrics present an interactive electromechanical behaviour that, especially in recent years, has generated much interest since it renders these materials adapt for use in a variety of electronic and industrial applications like sensors, actuators, transducers, smart structures. Both mechanical and electric loads are generally applied on these devices and can cause high concentrations of stress, particularly in proximity of defects or inhomogeneities, such as flaws, cavities or included particles. A thorough understanding of their fracture behaviour is crucial in order to improve their performances and avoid unexpected failures. Therefore, a considerable number of research works have addressed this topic in the last decades. Most of the theoretical studies on this subject find their analytical background in the complex variable formulation of plane anisotropic elasticity. This theoretical approach bases its main origins in the pioneering works of Muskelishvili and Lekhnitskii who obtained the solution of the elastic problem in terms of independent analytic functions of complex variables. In the present work, the expressions of stresses and elastic and electric displacements are obtained as functions of complex potentials through an analytical formulation which is the application to the piezoelectric static case of an approach introduced for orthotropic materials to solve elastodynamics problems. This method can be considered an alternative to other formalisms currently used, like the Stroh’s formalism. The equilibrium equations are reduced to a first order system involving a six-dimensional vector field. After that, a similarity transformation is induced to reach three independent Cauchy-Riemann systems, so justifying the introduction of the complex variable notation. Closed form expressions of near tip stress and displacement fields are therefore obtained. In the theoretical study of cracked piezoelectric bodies, the issue of assigning consistent electric boundary conditions on the crack faces is of central importance and has been addressed by many researchers. Three different boundary conditions are commonly accepted in literature: the permeable, the impermeable and the semipermeable (“exact”) crack model. This thesis takes into considerations all the three models, comparing the results obtained and analysing the effects of the boundary condition choice on the solution. The influence of load biaxiality and of the application of a remote electric field has been studied, pointing out that both can affect to a various extent the stress fields and the angle of initial crack extension, especially when non-singular terms are retained in the expressions of the electro-elastic solution. Furthermore, two different fracture criteria are applied to the piezoelectric case, and their outcomes are compared and discussed. The work is organized as follows: Chapter 1 briefly introduces the fundamental concepts of Fracture Mechanics. Chapter 2 describes plane elasticity formalisms for an anisotropic continuum (Eshelby-Read-Shockley and Stroh) and introduces for the simplified orthotropic case the alternative formalism we want to propose. Chapter 3 outlines the Linear Theory of Piezoelectricity, its basic relations and electro-elastic equations. Chapter 4 introduces the proposed method for obtaining the expressions of stresses and elastic and electric displacements, given as functions of complex potentials. The solution is obtained in close form and non-singular terms are retained as well. Chapter 5 presents several numerical applications aimed at estimating the effect of load biaxiality, electric field, considered permittivity of the crack. Through the application of fracture criteria the influence of the above listed conditions on the response of the system and in particular on the direction of crack branching is thoroughly discussed.
Resumo:
The biomechanical roles of both tendons and ligaments are fulfilled by extracellular matrix of these tissues. In particular, tension is mainly transmitted and resisted by fibrous proteins (collagen, elastin), whereas compressive load is absorbed by water-soluble glycosaminoglycans (GAGs). GAGs spanning the interfibrillar spaces and interacting with fibrils also seem to play a part in transmitting and resisting tensile stresses. Apart from different functional roles and collagen array, tendons and ligaments share the same basic structure showing periodic undulations of collagen fibers or crimps. Each crimp is composed of many knots of each single fibril or fibrillar crimps. Fibrillar and fiber crimps act as shock absorbers during the initial elongation of both tendons and ligaments and assist the elastic recoil of fibrils and fibers when the tensile stress is removed. The aim of this thesis was to evaluate whether GAGs directly affect the 3D microstructural integrity of fibrillar crimp and fiber crimps in both tendons and ligaments. Achilles tendons and medial collateral ligaments of the knee from eight female Sprague-Dawley rats (90 days old) were digested with chondroitinase ABC to remove GAGs and observed under a scanning electron microscope (SEM). In addition, isolated fibrils from these tissues obtained by mechanical homogenization were analyzed by a transmission electron microscope (TEM). Both samples digested with chondroitinase ABC or mechanically disrupted still showed crimps and fibrillar crimps comparable to tissues with a normal GAGs content. All fibrils in the fibrillar crimp region always twisted leftwards, thus changing their running plane, and then sharply bent, changing their course on a new plane. These data suggest that GAGs do not affect structural integrity or fibrillar crimps functions that seem mainly related to the local fibril leftward twisting and the alternating handedness of collagen from a molecular to a supramolecular level.
Resumo:
A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.