4 resultados para Information Interaction

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bifidobacterium is an important genus of the human gastrointestinal microbiota, affecting several host physiological features. Despite the numerous Bifidobacterium related health-promoting activities, there is still a dearth of information about the molecular mechanisms at the basis of the interaction between this microorganism and the host. Bacterial surface associated proteins may play an important role in this interaction because of their ability to intervene with host molecules, as recently reported for the host protein plasminogen. Plasminogen is the zymogen of the trypsin-like serine protease plasmin, an enzyme with a broad substrate specificity. Aim of this thesis is to deepen the knowledge about the interaction between Bifidobacterium and the human plasminogen system and its role in the Bifidobacterium-host interaction process. As a bifidobacterial model, B. animalis subsp. lactis BI07 has been used because of its large usage in dairy and pharmaceutical preparations. We started from the molecular characterization of the interaction between plasminogen and one bifidobacterial plasminogen receptor, DnaK, a cell wall protein showing high affinity for plasminogen, and went on with the study of the impact of intestinal environmental factors, such as bile salts and inflammation, on the plasminogen-mediated Bifidobacterium-host interaction. According to our in vitro findings, by enhancing the activation of the bifidobacterial bound plasminogen to plasmin, the host inflammatory response results in the decrease of the bifidobacterial adhesion to the host enterocytes, favouring bacterial migration to the luminal compartment. Conversely, in the absence of inflammation, plasminogen acts as a molecular bridge between host enterocytes and bifidobacteria, enhancing Bifidobacterium adhesion. Furthermore, adaptation to physiological concentrations of bile salts enhances the capability of this microorganism to interact with the host plasminogen system. The host plasminogen system thus represents an important and flexible tool used by bifidobacteria in the cross-talk with the host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Throughout the twentieth century statistical methods have increasingly become part of experimental research. In particular, statistics has made quantification processes meaningful in the soft sciences, which had traditionally relied on activities such as collecting and describing diversity rather than timing variation. The thesis explores this change in relation to agriculture and biology, focusing on analysis of variance and experimental design, the statistical methods developed by the mathematician and geneticist Ronald Aylmer Fisher during the 1920s. The role that Fisher’s methods acquired as tools of scientific research, side by side with the laboratory equipment and the field practices adopted by research workers, is here investigated bottom-up, beginning with the computing instruments and the information technologies that were the tools of the trade for statisticians. Four case studies show under several perspectives the interaction of statistics, computing and information technologies, giving on the one hand an overview of the main tools – mechanical calculators, statistical tables, punched and index cards, standardised forms, digital computers – adopted in the period, and on the other pointing out how these tools complemented each other and were instrumental for the development and dissemination of analysis of variance and experimental design. The period considered is the half-century from the early 1920s to the late 1960s, the institutions investigated are Rothamsted Experimental Station and the Galton Laboratory, and the statisticians examined are Ronald Fisher and Frank Yates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a strategy to model the behavior of fluids and their interaction with deformable bodies is proposed. The fluid domain is modeled by using the lattice Boltzmann method, thus analyzing the fluid dynamics by a mesoscopic point of view. It has been proved that the solution provided by this method is equivalent to solve the Navier-Stokes equations for an incompressible flow with a second-order accuracy. Slender elastic structures idealized through beam finite elements are used. Large displacements are accounted for by using the corotational formulation. Structural dynamics is computed by using the Time Discontinuous Galerkin method. Therefore, two different solution procedures are used, one for the fluid domain and the other for the structural part, respectively. These two solvers need to communicate and to transfer each other several information, i.e. stresses, velocities, displacements. In order to guarantee a continuous, effective, and mutual exchange of information, a coupling strategy, consisting of three different algorithms, has been developed and numerically tested. In particular, the effectiveness of the three algorithms is shown in terms of interface energy artificially produced by the approximate fulfilling of compatibility and equilibrium conditions at the fluid-structure interface. The proposed coupled approach is used in order to solve different fluid-structure interaction problems, i.e. cantilever beams immersed in a viscous fluid, the impact of the hull of the ship on the marine free-surface, blood flow in a deformable vessels, and even flapping wings simulating the take-off of a butterfly. The good results achieved in each application highlight the effectiveness of the proposed methodology and of the C++ developed software to successfully approach several two-dimensional fluid-structure interaction problems.