9 resultados para Industry 4.0 industrializzazione CIM CAM manufacturing

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fourth industrial revolution, also known as Industry 4.0, has rapidly gained traction in businesses across Europe and the world, becoming a central theme in small, medium, and large enterprises alike. This new paradigm shifts the focus from locally-based and barely automated firms to a globally interconnected industrial sector, stimulating economic growth and productivity, and supporting the upskilling and reskilling of employees. However, despite the maturity and scalability of information and cloud technologies, the support systems already present in the machine field are often outdated and lack the necessary security, access control, and advanced communication capabilities. This dissertation proposes architectures and technologies designed to bridge the gap between Operational and Information Technology, in a manner that is non-disruptive, efficient, and scalable. The proposal presents cloud-enabled data-gathering architectures that make use of the newest IT and networking technologies to achieve the desired quality of service and non-functional properties. By harnessing industrial and business data, processes can be optimized even before product sale, while the integrated environment enhances data exchange for post-sale support. The architectures have been tested and have shown encouraging performance results, providing a promising solution for companies looking to embrace Industry 4.0, enhance their operational capabilities, and prepare themselves for the upcoming fifth human-centric revolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research project aims to improve the Design for Additive Manufacturing of metal components. Firstly, the scenario of Additive Manufacturing is depicted, describing its role in Industry 4.0 and in particular focusing on Metal Additive Manufacturing technologies and the Automotive sector applications. Secondly, the state of the art in Design for Additive Manufacturing is described, contextualizing the methodologies, and classifying guidelines, rules, and approaches. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened together with the Computer-Aided Technologies to support the approaches implementation. Therefore, a general Design for Additive Manufacturing workflow based on product and process optimization has been systematically defined. From the analysis of the state of the art, the use of a holistic approach has been considered fundamental and thus the use of integrated product-process design platforms has been evaluated as a key element for its development. Indeed, a computer-based methodology exploiting integrated tools and numerical simulations to drive the product and process optimization has been proposed. A validation of CAD platform-based approaches has been performed, as well as potentials offered by integrated tools have been evaluated. Concerning product optimization, systematic approaches to integrate topology optimization in the design have been proposed and validated through product optimization of an automotive case study. Concerning process optimization, the use of process simulation techniques to prevent manufacturing flaws related to the high thermal gradients of metal processes is developed, providing case studies to validate results compared to experimental data, and application to process optimization of an automotive case study. Finally, an example of the product and process design through the proposed simulation-driven integrated approach is provided to prove the method's suitability for effective redesigns of Additive Manufacturing based high-performance metal products. The results are then outlined, and further developments are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, manufacturing companies have been facing two significant challenges. First, digitalization imposes adopting Industry 4.0 technologies and allows creating smart, connected, self-aware, and self-predictive factories. Second, the attention on sustainability imposes to evaluate and reduce the impact of the implemented solutions from economic and social points of view. In manufacturing companies, the maintenance of physical assets assumes a critical role. Increasing the reliability and the availability of production systems leads to the minimization of systems’ downtimes; In addition, the proper system functioning avoids production wastes and potentially catastrophic accidents. Digitalization and new ICT technologies have assumed a relevant role in maintenance strategies. They allow assessing the health condition of machinery at any point in time. Moreover, they allow predicting the future behavior of machinery so that maintenance interventions can be planned, and the useful life of components can be exploited until the time instant before their fault. This dissertation provides insights on Predictive Maintenance goals and tools in Industry 4.0 and proposes a novel data acquisition, processing, sharing, and storage framework that addresses typical issues machine producers and users encounter. The research elaborates on two research questions that narrow down the potential approaches to data acquisition, processing, and analysis for fault diagnostics in evolving environments. The research activity is developed according to a research framework, where the research questions are addressed by research levers that are explored according to research topics. Each topic requires a specific set of methods and approaches; however, the overarching methodological approach presented in this dissertation includes three fundamental aspects: the maximization of the quality level of input data, the use of Machine Learning methods for data analysis, and the use of case studies deriving from both controlled environments (laboratory) and real-world instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern industrial environment is populated by a myriad of intelligent devices that collaborate for the accomplishment of the numerous business processes in place at the production sites. The close collaboration between humans and work machines poses new interesting challenges that industry must overcome in order to implement the new digital policies demanded by the industrial transition. The Industry 5.0 movement is a companion revolution of the previous Industry 4.0, and it relies on three characteristics that any industrial sector should have and pursue: human centrality, resilience, and sustainability. The application of the fifth industrial revolution cannot be completed without moving from the implementation of Industry 4.0-enabled platforms. The common feature found in the development of this kind of platform is the need to integrate the Information and Operational layers. Our thesis work focuses on the implementation of a platform addressing all the digitization features foreseen by the fourth industrial revolution, making the IT/OT convergence inside production plants an improvement and not a risk. Furthermore, we added modular features to our platform enabling the Industry 5.0 vision. We favored the human centrality using the mobile crowdsensing techniques and the reliability and sustainability using pluggable cloud computing services, combined with data coming from the crowd support. We achieved important and encouraging results in all the domains in which we conducted our experiments. Our IT/OT convergence-enabled platform exhibits the right performance needed to satisfy the strict requirements of production sites. The multi-layer capability of the framework enables the exploitation of data not strictly coming from work machines, allowing a more strict interaction between the company, its employees, and customers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multi-faced evolution of network technologies ranges from big data centers to specialized network infrastructures and protocols for mission-critical operations. For instance, technologies such as Software Defined Networking (SDN) revolutionized the world of static configuration of the network - i.e., by removing the distributed and proprietary configuration of the switched networks - centralizing the control plane. While this disruptive approach is interesting from different points of view, it can introduce new unforeseen vulnerabilities classes. One topic of particular interest in the last years is industrial network security, an interest which started to rise in 2016 with the introduction of the Industry 4.0 (I4.0) movement. Networks that were basically isolated by design are now connected to the internet to collect, archive, and analyze data. While this approach got a lot of momentum due to the predictive maintenance capabilities, these network technologies can be exploited in various ways from a cybersecurity perspective. Some of these technologies lack security measures and can introduce new families of vulnerabilities. On the other side, these networks can be used to enable accurate monitoring, formal verification, or defenses that were not practical before. This thesis explores these two fields: by introducing monitoring, protections, and detection mechanisms where the new network technologies make it feasible; and by demonstrating attacks on practical scenarios related to emerging network infrastructures not protected sufficiently. The goal of this thesis is to highlight this lack of protection in terms of attacks on and possible defenses enabled by emerging technologies. We will pursue this goal by analyzing the aforementioned technologies and by presenting three years of contribution to this field. In conclusion, we will recapitulate the research questions and give answers to them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fourth industrial revolution is paving the way for Industrial Internet of Things applications where industrial assets (e.g., robotic arms, valves, pistons) are equipped with a large number of wireless devices (i.e., microcontroller boards that embed sensors and actuators) to enable a plethora of new applications, such as analytics, diagnostics, monitoring, as well as supervisory, and safety control use-cases. Nevertheless, current wireless technologies, such as Wi-Fi, Bluetooth, and even private 5G networks, cannot fulfill all the requirements set up by the Industry 4.0 paradigm, thus opening up new 6G-oriented research trends, such as the use of THz frequencies. In light of the above, this thesis provides (i) a broad overview of the main use-cases, requirements, and key enabling wireless technologies foreseen by the fourth industrial revolution, and (ii) proposes innovative contributions, both theoretical and empirical, to enhance the performance of current and future wireless technologies at different levels of the protocol stack. In particular, at the physical layer, signal processing techniques are being exploited to analyze two multiplexing schemes, namely Affine Frequency Division Multiplexing and Orthogonal Chirp Division Multiplexing, which seem promising for high-frequency wireless communications. At the medium access layer, three protocols for intra-machine communications are proposed, where one is based on LoRa at 2.4 GHz and the others work in the THz band. Different scheduling algorithms for private industrial 5G networks are compared, and two main proposals are described, i.e., a decentralized scheme that leverages machine learning techniques to better address aperiodic traffic patterns, and a centralized contention-based design that serves a federated learning industrial application. Results are provided in terms of numerical evaluations, simulation results, and real-world experiments. Several improvements over the state-of-the-art were obtained, and the description of up-and-running testbeds demonstrates the feasibility of some of the theoretical concepts when considering a real industry plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pervasive availability of connected devices in any industrial and societal sector is pushing for an evolution of the well-established cloud computing model. The emerging paradigm of the cloud continuum embraces this decentralization trend and envisions virtualized computing resources physically located between traditional datacenters and data sources. By totally or partially executing closer to the network edge, applications can have quicker reactions to events, thus enabling advanced forms of automation and intelligence. However, these applications also induce new data-intensive workloads with low-latency constraints that require the adoption of specialized resources, such as high-performance communication options (e.g., RDMA, DPDK, XDP, etc.). Unfortunately, cloud providers still struggle to integrate these options into their infrastructures. That risks undermining the principle of generality that underlies the cloud computing scale economy by forcing developers to tailor their code to low-level APIs, non-standard programming models, and static execution environments. This thesis proposes a novel system architecture to empower cloud platforms across the whole cloud continuum with Network Acceleration as a Service (NAaaS). To provide commodity yet efficient access to acceleration, this architecture defines a layer of agnostic high-performance I/O APIs, exposed to applications and clearly separated from the heterogeneous protocols, interfaces, and hardware devices that implement it. A novel system component embodies this decoupling by offering a set of agnostic OS features to applications: memory management for zero-copy transfers, asynchronous I/O processing, and efficient packet scheduling. This thesis also explores the design space of the possible implementations of this architecture by proposing two reference middleware systems and by adopting them to support interactive use cases in the cloud continuum: a serverless platform and an Industry 4.0 scenario. A detailed discussion and a thorough performance evaluation demonstrate that the proposed architecture is suitable to enable the easy-to-use, flexible integration of modern network acceleration into next-generation cloud platforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project aims to gather an understanding of additive manufacturing and other manufacturing 4.0 techniques with an eyesight for industrialization. First the internal material anisotropy of elements created with the most economically feasible FEM technique was established. An understanding of the main drivers for variability for AM was portrayed, with the focus on achieving material internal isotropy. Subsequently, a technique for deposition parameter optimization was presented, further procedure testing was performed following other polymeric materials and composites. A replicability assessment by means of the use of technology 4.0 was proposed, and subsequent industry findings gathered the ultimate need of developing a process that demonstrate how to re-engineer designs in order to show the best results with AM processing. The latest study aims to apply the Industrial Design and Structure Method (IDES) and applying all the knowledge previously stacked into fully reengineer a product with focus of applying tools from 4.0 era, from product feasibility studies, until CAE – FEM analysis and CAM – DfAM. These results would help in making AM and FDM processes a viable option to be combined with composites technologies to achieve a reliable, cost-effective manufacturing method that could also be used for mass market, industry applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La ricerca si pone l’obiettivo di analizzare strumenti e metodi per l’applicazione dell’H-BIM comprendendone le criticità e fornendo soluzioni utili in questo campo. Al contempo la finalità non è circoscrivibile alla semplice produzione di modelli 3D semanticamente strutturati e parametrici a partire da una nuvola di punti ottenuta con un rilievo digitale, ma si propone di definire i criteri e le metodiche di applicazione delle H-BIM all’interno dell’intero processo. L’impostazione metodologica scelta prevede un processo che parte dalla conoscenza dello stato dell’arte in tema di H-BIM con lo studio dell’attuale normativa in materia e i casi studio di maggior rilevanza. Si è condotta una revisione critica completa della letteratura in merito alla tecnologia BIM e H-BIM, analizzando esperienze di utilizzo della tecnologia BIM nel settore edile globale. Inoltre, al fine di promuovere soluzioni intelligenti all’interno del Facility Management è stato necessario analizzare le criticità presenti nelle procedure, rivedere i processi e i metodi per raccogliere e gestire i dati, nonché individuare le procedure adeguate per garantire il successo dell’implementazione. Sono state evidenziate le potenzialità procedurali e operative legate all’uso sistematico delle innovazioni digitali nell’ottica del Facility Management, oltre che allo studio degli strumenti di acquisizione ed elaborazione dei dati e di post-produzione. Si è proceduto al testing su casi specifici per l’analisi della fase di Scan-to-BIM, differenziati per tipologia di utilizzo, data di costruzione, proprietà e localizzazione. Il percorso seguito ha permesso di porre in luce il significato e le implicazioni dell’utilizzo del BIM nell’ambito del Facility Management, sulla base di una differenziazione delle applicazioni del modello BIM al variare delle condizioni in essere. Infine, sono state definite le conclusioni e formulate raccomandazioni riguardo al futuro utilizzo della tecnologia H-BIM nel settore delle costruzioni. In particolare, definendo l’emergente frontiera del Digital Twin, quale veicolo necessario nel futuro della Costruzione 4.0.