17 resultados para Immunologic Diseases
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The study of protein expression profiles for biomarker discovery in serum and in mammalian cell populations needs the continuous improvement and combination of proteins/peptides separation techniques, mass spectrometry, statistical and bioinformatic approaches. In this thesis work two different mass spectrometry-based protein profiling strategies have been developed and applied to liver and inflammatory bowel diseases (IBDs) for the discovery of new biomarkers. The first of them, based on bulk solid-phase extraction combined with matrix-assisted laser desorption/ionization - Time of Flight mass spectrometry (MALDI-TOF MS) and chemometric analysis of serum samples, was applied to the study of serum protein expression profiles both in IBDs (Crohn’s disease and ulcerative colitis) and in liver diseases (cirrhosis, hepatocellular carcinoma, viral hepatitis). The approach allowed the enrichment of serum proteins/peptides due to the high interaction surface between analytes and solid phase and the high recovery due to the elution step performed directly on the MALDI-target plate. Furthermore the use of chemometric algorithm for the selection of the variables with higher discriminant power permitted to evaluate patterns of 20-30 proteins involved in the differentiation and classification of serum samples from healthy donors and diseased patients. These proteins profiles permit to discriminate among the pathologies with an optimum classification and prediction abilities. In particular in the study of inflammatory bowel diseases, after the analysis using C18 of 129 serum samples from healthy donors and Crohn’s disease, ulcerative colitis and inflammatory controls patients, a 90.7% of classification ability and a 72.9% prediction ability were obtained. In the study of liver diseases (hepatocellular carcinoma, viral hepatitis and cirrhosis) a 80.6% of prediction ability was achieved using IDA-Cu(II) as extraction procedure. The identification of the selected proteins by MALDITOF/ TOF MS analysis or by their selective enrichment followed by enzymatic digestion and MS/MS analysis may give useful information in order to identify new biomarkers involved in the diseases. The second mass spectrometry-based protein profiling strategy developed was based on a label-free liquid chromatography electrospray ionization quadrupole - time of flight differential analysis approach (LC ESI-QTOF MS), combined with targeted MS/MS analysis of only identified differences. The strategy was used for biomarker discovery in IBDs, and in particular of Crohn’s disease. The enriched serum peptidome and the subcellular fractions of intestinal epithelial cells (IECs) from healthy donors and Crohn’s disease patients were analysed. The combining of the low molecular weight serum proteins enrichment step and the LCMS approach allowed to evaluate a pattern of peptides derived from specific exoprotease activity in the coagulation and complement activation pathways. Among these peptides, particularly interesting was the discovery of clusters of peptides from fibrinopeptide A, Apolipoprotein E and A4, and complement C3 and C4. Further studies need to be performed to evaluate the specificity of these clusters and validate the results, in order to develop a rapid serum diagnostic test. The analysis by label-free LC ESI-QTOF MS differential analysis of the subcellular fractions of IECs from Crohn’s disease patients and healthy donors permitted to find many proteins that could be involved in the inflammation process. Among them heat shock protein 70, tryptase alpha-1 precursor and proteins whose upregulation can be explained by the increased activity of IECs in Crohn’s disease were identified. Follow-up studies for the validation of the results and the in-depth investigation of the inflammation pathways involved in the disease will be performed. Both the developed mass spectrometry-based protein profiling strategies have been proved to be useful tools for the discovery of disease biomarkers that need to be validated in further studies.
Resumo:
Streptococcus pneumoniae is an important life threatening human pathogen causing agent of invasive diseases such as otitis media, pneumonia, sepsis and meningitis, but is also a common inhabitant of the respiratory tract of children and healthy adults. Likewise most streptococci, S. pneumoniae decorates its surface with adhesive pili, composed of covalently linked subunits and involved in the attachment to epithelial cells and virulence. The pneumococcal pili are encoded by two genomic regions, pilus islet 1 (PI-1), and pilus islet-2 (PI-2), which are present in about 30% and 16% of the pneumococcal strains, respectively. PI-1 exists in three clonally related variants, whereas PI-2 is highly conserved. The presence of the islets does not correlate with the serotype of the strains, but with the genotype (as determined by Multi Locus Sequence Typing). The prevalence of PI-1 and PI-2 positive strains is similar in isolates from invasive disease and carriage. To better dissect a possible association between PIs presence and disease we evaluated the distribution of the two PIs in a panel of 113 acute otitis media (AOM) clinical isolates from Israel. PI-1 was present in 30.1% (N=34) of the isolates tested, and PI-2 in 7% (N=8). We found that 50% of the PI-1 positive isolates belonged to the international clones Spain9V-3 (ST156) and Taiwan19F-14 (ST236), and that PI-2 was not present in the absence of Pl-1. In conclusion, there was no correlation between PIs presence and AOM, and, in general, the observed differences in PIs prevalence are strictly dependent upon regional differences in the distribution of the clones. Finally, in the AOM collection the prevalence of PI-1 was higher among antibiotic resistant isolates, confirming previous indications obtained by the in silico analysis of the MLST database collection. Since the pilus-1 subunits were shown to confer protection in mouse models of infection both in active and passive immunization studies, and were regarded as potential candidates for a new generation of protein-based vaccines, the functional characterization was mainly focused on S. pneumoniae pilus -1 components. The pneumococcal pilus-1 is composed of three subunits, RrgA, RrgB and RrgC, each stabilized by intra-molecular isopeptide bonds and covalently polymerized by means of inter-molecular isopeptide bonds to form an extended fibre. The pilus shaft is a multimeric structure mainly composed by the RrgB backbone subunit. The minor ancillary proteins are located at the tip and at the base of the pilus, where they have been proposed to act as the major adhesin (RrgA) and as the pilus anchor (RrgC), respectively. RrgA is protective in in vivo mouse models, and exists in two variants (clades I and II). Mapping of the sequence variability onto the RrgA structure predicted from X-ray data showed that the diversity was restricted to the “head” of the protein, which contains the putative binding domains, whereas the elongated “stalk” was mostly conserved. To investigate whether this variability could influence the adhesive capacity of RrgA and to map the regions important for binding, two full-length protein variants and three recombinant RrgA portions were tested for adhesion to lung epithelial cells and to purified extracellular matrix (ECM) components. The two RrgA variants displayed similar binding abilities, whereas none of the recombinant fragments adhered at levels comparable to those of the full-length protein, suggesting that proper folding and structural arrangement are crucial to retain protein functionality. Furthermore, the two RrgA variants were shown to be cross-reactive in vitro and cross-protective in vivo in a murine model of passive immunization. Taken together, these data indicate that the region implicated in adhesion and the functional epitopes responsible for the protective ability of RrgA may be conserved and that the considerable level of variation found within the “head” domain of RrgA may have been generated by immunologic pressure without impairing the functional integrity of the pilus.
Resumo:
Ultrasonography (US) is an essential imaging tool for identifying abnormalities of the liver parenchyma, biliary tract and vascular system. US has replaced radiography as the initial imaging procedure in screening for liver disease in small animals. There are few reports of the use of conventional and helical computed tomography (CT) to assess canine or feline parenchymal and neoplastic liver disease and biliary disorders. In human medicine the development of multidetector- row helical computed tomography (MDCT), with its superior spatial and temporal resolution, has resulted in improved detection and characterization of diffuse and focal liver lesions. The increased availability of MDCT in veterinary practice provides incentive to develop MDCT protocols for liver imaging in small animals. The purpose of this study is to assess the rule of MDCT in the characterization of hepatobiliary diseases in small animals; and to compare this method with conventional US. Candidates for this prospective study were 175 consecutive patients (dogs and cats) referred for evaluation of hepatobiliary disease. The patients underwent liver US and MDCT. Percutaneous needle biopsy was performed on all liver lesions or alterations encountered. As for gallbladder, histopatological evaluation was obtained from cholecystectomy specimens. Ultrasonographic findings in this study agreed well with those of previous reports. A protocol for dual-phase liver MDCT in small animals has been described. MDCT findings in parenchymal disorders of the liver, hepatic neoplasia and biliary disorders are here first described in dogs and cats and compared with the corresponding features in human medicine. The ability of MDCT in detection and characterization of hepatobiliary diseases in small animals is overall superior to conventional US. Ultrasonography and MDCT scanning, however, play complementary rules in the evaluation of these diseases. Many conditions have distinctive imaging features that may permit diagnosis. In most instances biopsy is required for definitive diagnosis.
Resumo:
Traditional morphological examinations are not anymore sufficient for a complete evaluation of tumoral tissue and the use of neoplastic markers is of utmost importance. Neoplastic markers can be classified in: diagnostic, prognostic and predictive markers. Three markers were analyzed. 1) Insulin-like growth factor binding protein 2 (IGFBP2) was immunohistochemically examined in prostatic tissues: 40 radical prostatectomies from hormonally untreated patients with their preoperative biopsies, 10 radical prostatectomies from patients under complete androgen ablation before surgery and 10 simple prostatectomies from patients with bladder outlet obstruction. Results were compared with α-methylacyl-CoA racemase (AMACR). IGFBP2 was expressed in the cytoplasm of untreated adenocarcinomas and, to a lesser extent, in HG-PIN; the expression was markedly lower in patients after complete androgen ablation. AMACR was similarly expressed in both adenocarcinoma and HG-PIN, the level being similar in both lesions; the expression was slightly lower in patients after complete androgen ablation. IGFBP2 may be used a diagnostic marker of prostatic adenocarcinomas. 2) Heparan surface proteoglycan immunohistochemical expression was examined in 150 oral squamous cell carcinomas. Follow up information was available in 93 patients (range: 6-34 months, mean: 19±7). After surgery, chemotherapy was performed in 8 patients and radiotherapy in 61 patients. Multivariate and univariate overall survival analyses showed that high expression of syndecan-1 (SYN-1) was associated with a poor prognosis. In patients treated with radiotherapy, such association was higher. SYN-1 is a prognostic marker in oral squamous cell carcinomas; it may also represent a predictive factor for responsiveness to radiotherapy. 3) EGFR was studied in 33 pulmonary adenocarcinomas with traditional DNA sequencing methods and with two mutation-specific antibodies. Overall, the two antibodies had 61.1% sensitivity and 100% specificity in detecting EGFR mutations. EGFR mutation-specific antibodies may represent a predictive marker to identify patients candidate to tyrosine kinase inhibitors therapy.
Resumo:
Protein aggregation and formation of insoluble aggregates in central nervous system is the main cause of neurodegenerative disease. Parkinson’s disease is associated with the appearance of spherical masses of aggregated proteins inside nerve cells called Lewy bodies. α-Synuclein is the main component of Lewy bodies. In addition to α-synuclein, there are more than a hundred of other proteins co-localized in Lewy bodies: 14-3-3η protein is one of them. In order to increase our understanding on the aggregation mechanism of α-synuclein and to study the effect of 14-3-3η on it, I addressed the following questions. (i) How α-synuclein monomers pack each other during aggregation? (ii) Which is the role of 14-3-3η on α-synuclein packing during its aggregation? (iii) Which is the role of 14-3-3η on an aggregation of α-synuclein “seeded” by fragments of its fibrils? In order to answer these questions, I used different biophysical techniques (e.g., Atomic force microscope (AFM), Nuclear magnetic resonance (NMR), Surface plasmon resonance (SPR) and Fluorescence spectroscopy (FS)).
Resumo:
Asthma and chronic obstructive pulmonary disease (COPD) are two distinct lung diseases with distinctive clinical and inflammatory features. A proportion of asthmatic patients experience a fixed airflow obstruction that persists despite optimal pharmacologic treatment for reasons that are still largely unknown. We found that patients with asthma and COPD sharing a similar fixed airflow obstruction have an increased lung function decline and frequency of exacerbations. Nevertheless, the decline in lung function is associated with specific features of the underlying inflammation. Airway inflammation increases during asthma exacerbation and disease severity. Less is known about the correlations between symptoms and airway inflammation in COPD patients. We found that there is no correlation between symptoms and lung function in COPD patients. Nevertheless symptoms changes are associated with specific inflammatory changes: cough is associated with an increase of sputum neutrophils in COPD, dyspnoea is associated with an increase of eosinophils. The mechanisms of this correlation remain unknown. Neutrophils inflammation is associated with bacterial colonization in stable COPD. Is not known whether inhaled corticosteroids might facilitate bacterial colonization in COPD patients. We found that the use of inhaled corticosteroids in COPD patients is associated with an increase of airway bacterial load and with an increase of airway pathogen detection. Bacterial and viral infections are the main causes of COPD and asthma exacerbations. Impaired innate immune responses to rhinovirus infections have been described in adult patients with atopic asthma. Whether this impaired immune condition is present early in life and whether is modulated by a concomitant atopic condition is currently unknown. We found that deficient innate immune responses to rhinovirus infection are already present early in life in atopic patients without asthma and in asthmatic subjects. These findings generalize the scenario of increased susceptibility to viral infections to other Th2 oriented conditions.
Resumo:
Human Papillomavirus (HPV) is the cause of cervical cancers (among these, adenocarcinoma, AdCa) and is associated to a subgroup of oropharyngeal carcinomas (OPSCCs). Even if the risk for cancer development is linked to the infection by some viral genotypes, mainly HPV16 and 18, viral DNA alone seems not to be sufficient for diagnosis. Moreover, the role of the virus in OPSCCs has not been totally clarified yet. In the first part of the thesis, the performances concerning viral genotyping in clinical cervical samples of a new pyrosequencing-based test and a well-known hybridization-based assay have been compared. Similar results between the methods have been obtained. However, the former showed advantages in detecting intratype variants, higher specificity and a broader spectrum of detectable HPV types. The second part deals with the evaluation of virological markers (genotyping, viral oncoproteins expression, viral load, physical state and CpG methylation of HPV16 genome) in the diagnosis/prognosis of cervical AdCa and HPV-associated OPSCCs. HPV16 has been confirmed the most prevalent genotype in both the populations. Interestingly, the mean methylation frequency of viral DNA at the early promoter showed the tendency to be associated to invasion for cervical AdCa and to a worse prognosis for OPSCCs, suggesting a promising role as diagnostic/prognostic biomarker. The experiments of the third part were performed at the DKFZ in Heidelberg (Germany) and dealt with the analysis of the response to IFN-k transfection in HPV16-positive cervical cancer and head&neck carcinoma cell lines to evaluate its potential role as new treatment. After 24h, we observed increased IFN-b expression which lead to the up-regulation of genes involved in the antigens presentation pathway (MHC class I and immunoproteasome) and antiviral response as well, in particular in cervical cancer cell lines. This fact suggested also the presence of different HPV-mediated carcinogenic pathways between the two anatomical districts.
Resumo:
Inflammatory Bowel Diseases (IBD) are intestinal chronic relapsing diseases which ethiopathogenesis remains uncertain. Several group have attempted to study the role of factors involved such as genetic susceptibility, environmental factors such as smoke, diet, sex, immunological factors as well as the microbioma. None of the treatments available satisfy several criteria at the same time such as safety, long-term remission, histopatological healing, and specificity. We used two different approaches for the development of new therapeutic treatment for Inflammatory Bowel Disease. The first is focused on the understanding of the potential role of functional food and nutraceuticals nutrients in the treatment of IBD. To do so, we investigated the role of Curcuma longa in the treatment of chemical induced colitis in mice model. Since Curcma Longa has been investigated for its antinflammatory role related to the TNFα pathway as well investigators have reported few cases of patients with ulcerative colites treated with this herbs, we harbored the hypothesis of a role of Curcuma Longa in the treatment f IBD as well as we decided to assess its role in intestinal motility. The second part is based on an immunological approach to develop new drugs to induce suppression in Crohn’s disease or to induce mucosa immunity such as in colonrectal tumor. The main idea behind this approach is that we could manipulate relevant cell-cell interactions using synthetic peptides. We demonstrated the role of the unique interaction between molecules expressed on intestinal epithelial cells such as CD1d and CEACAM5 and on CD8+ T cells. In normal condition this interaction has a role for the expansion of the suppressor CD8+ T cells. Here, we characterized this interaction, we defined which are the epitope involved in the binding and we attempted to develop synthetic peptides from the N domain of CEACAM5 in order to manipulate it.
Resumo:
Acute myocardial infarction (AMI) is a multifactorial disease with a complex pathogenesis where lifestyle, individual genetic background and environmental risk factors are involved. Altered inflammatory responses seems to be implicated in the pathogenesis of atherosclerosis. To understand which genes may predispose to increased risk of cardiovascular disease gene polymorphism of immune regulatory genes, and clinical events from the Offs of parents with an early AMI were investigated. Genetics data from Offs were compared with those obtained from healthy subjects and an independent cohort of patients with clinical sporadic AMI. Rates of clinical events during a 24 years follow up from Offs and from an independent Italian population survey were also evaluated. This study showed that a genetic signature consisting of the concomitant presence of the CC genotype of VEGF, the A allele of IL-10 and the A allele of IFN-γ was indeed present in the Offs population. During the 24-year follow-up, Offs with a positive familiarity in spite of a relatively young age showed an increased prevalence of diabetes, ischemic heart disease and stroke. In these patients with the genetic signature the EBV and HHV-6 herpes virus were also investigated and founded. These findings reinforce the notion that subjects with a familial history of AMI are at risk of an accelerated aging of cardiovascular system resulting in cardiovascular events. These data suggest that selected genes with immune regulatory functions and envoronmental factors are part of the complex genetic background contributing to familiarity for cardiovascular diseases.N
Resumo:
This dissertation explores how diseases contributed to shape historical institutions and how health and diseases are still affecting modern comparative development. The overarching goal of this investigation is to identify the channels linking geographic suitability to diseases and the emergence of historical and modern insitutions, while tackling the endogenenity problems that traditionally undermine this literature. I attempt to do so by taking advantage of the vast amount of newly available historical data and of the richness of data accessible through the geographic information system (GIS). The first chapter of my thesis, 'Side Effects of Immunities: The African Slave Trade', proposes and test a novel explanation for the origins of slavery in the tropical regions of the Americas. I argue that Africans were especially attractive for employment in tropical areas because they were immune to many of the diseases that were ravaging those regions. In particular, Africans' resistance to malaria increased the profitability of slaves coming from the most malarial parts of Africa. In the second chapter of my thesis, 'Caste Systems and Technology in Pre-Modern Societies', I advance and test the hypothesis that caste systems, generally viewed as a hindrance to social mobility and development, had been comparatively advantageous at an early stage of economic development. In the third chapter, 'Malaria as Determinant of Modern Ethnolinguistic Diversity', I conjecture that in highly malarious areas the necessity to adapt and develop immunities specific to the local disease environment historically reduced mobility and increased isolation, thus leading to the formation of a higher number of different ethnolinguistic groups. In the final chapter, 'Malaria Risk and Civil Violence: A Disaggregated Analysis for Africa', I explore the relationship between malaria and violent conflicts. Using georeferenced data for Africa, the article shows that violent events are more frequent in areas where malaria risk is higher.
Resumo:
In recent years the hot water treatment (HW) represents an effective and safe approach for managing postharvest decay. This study reported the effect of an HW (60°C for 60 s and 45°C for 10 min) on brown rot and blue mould respectively. Peaches was found more thermotolerant compared to apple fruit, otherwise Penicillium expansum was more resistant to heat with respect to Monilinia spp. In semi-commercial and commercial trials, the inhibition of brown rot in naturally infected peaches was higher than 78% after 6 days at 0°C and 3 days at 20°C. Moreover, in laboratory trials a 100% disease incidence reduction was obtained by treating artificially infected peaches at 6-12 h after inoculation revealing a curative effect of HW. The expression levels of some genes were evaluated by qRT-PCR. Specifically, the cell wall genes (β-GAL, PL, PG, PME) showed a general decrease of expression level whereas PAL, CHI, HSP70 and ROS-scavenging genes were induced in treated peaches compared to the control ones. Contrarily, HW applied on artificially infected fruit before the inoculum was found to increase brown rot susceptibility. This aspect might be due to an increase of fruit VOCs emission as revealed by PTR-ToF-MS analysis. In addition a microarray experiment was conducted to analyze molecular mechanisms underneath the apple response to heat. Our results showed a largest amount of induced Heat shock proteins (HSPs), Heat shock cognate proteins (HSCs), Heat shock transcription factors (HSTFs) genes found at 1 and 4 hours from the treatment. Those genes required for the thermotolerance process could be involved in induced resistance response. The hypothesis was confirmed by 30% of blue mold disease reduction in artificially inoculated apple after 1 and 4 hours from the treatment. In order to improve peaches quality and disease management during storage, an innovative tool was also used: Da-meter.
Resumo:
Identification and genetic diversity of phytoplasmas infecting tropical plant species, selected among those most agronomically relevant in South-east Asia and Latin America were studied. Correlation between evolutionary divergence of relevant phytoplasma strains and their geographic distribution by comparison on homologous genes of phytoplasma strains detected in the same or related plant species in other geographical areas worldwide was achieved. Molecular diversity was studied on genes coding ribosomal proteins, groEL, tuf and amp besides phytoplasma 16S rRNA. Selected samples infected by phytoplasmas belonging to diverse ribosomal groups were also studied by in silico RFLP followed by phylogenetic analyses. Moreover a partial genome annotation of a ‘Ca. P. brasiliense’ strain was done towards future application for epidemiological studies. Phytoplasma presence in cassava showing frog skin (CFSD) and witches’ broom (CWB) diseases in Costa Rica - Paraguay and in Vietnam – Thailand, respectively, was evaluated. In both cases, the diseases were associated with phytoplasmas related to aster yellows, apple proliferation and “stolbur” groups, while only phytoplasma related to X-disease group in CFSD, and to hibiscus witches’ broom, elm yellows and clover proliferation groups in CWB. Variability was found among strains belonging to the same ribosomal group but having different geographic origin and associated with different disease. Additionally, a dodder transmission assay to elucidate the role of phytoplasmas in CWB disease was carried out, and resulted in typical phytoplasma symptoms in periwinkle plants associated with the presence of aster yellows-related strains. Lethal wilt disease, a severe disease of oil palm in Colombia that is spreading throughout South America was also studied. Phytoplasmas were detected in symptomatic oil palm and identified as ‘Ca. P. asteris’, ribosomal subgroup 16SrI-B, and were distinguished from other aster yellows phytoplasmas used as reference strains; in particular, from an aster yellows strain infecting corn in the same country.
Resumo:
Background. Hhereditary cystic kidney diseases are a heterogeneous spectrum of disorders leading to renal failure. Clinical features and family history can help to distinguish the recessive from dominant diseases but the differential diagnosis is difficult due the phenotypic overlap. The molecular diagnosis is often the only way to characterize the different forms. A conventional molecular screening is suitable for small genes but is expensive and time-consuming for large size genes. Next Generation Sequencing (NGS) technologies enables massively parallel sequencing of nucleic acid fragments. Purpose. The first purpose was to validate a diagnostic algorithm useful to drive the genetic screening. The second aim was to validate a NGS protocol of PKHD1 gene. Methods. DNAs from 50 patients were submitted to conventional screening of NPHP1, NPHP5, UMOD, REN and HNF1B genes. 5 patients with known mutations in PKHD1 were submitted to NGS to validate the new method and a not genotyped proband with his parents were analyzed for a diagnostic application. Results. The conventional molecular screening detected 8 mutations: 1) the novel p.E48K of REN in a patient with cystic nephropathy, hyperuricemia, hyperkalemia and anemia; 2) p.R489X of NPHP5 in a patient with Senior Loken Syndrome; 3) pR295C of HNF1B in a patient with renal failure and diabetes.; 4) the NPHP1 deletion in 3 patients with medullar cysts; 5) the HNF1B deletion in a patient with medullar cysts and renal hypoplasia and in a diabetic patient with liver disease. The NGS of PKHD1 detected all known mutations and two additional variants during the validation. The diagnostic NGS analysis identified the patient’s compound heterozygosity with a maternal frameshift mutation and a paternal missense mutation besides a not transmitted paternal missense mutation. Conclusions. The results confirm the validity of our diagnostic algorithm and suggest the possibility to introduce this NGS protocol to clinical practice.
Resumo:
The physico-chemical characterization, structure-pharmacokinetic and metabolism studies of new semi synthetic analogues of natural bile acids (BAs) drug candidates have been performed. Recent studies discovered a role of BAs as agonists of FXR and TGR5 receptor, thus opening new therapeutic target for the treatment of liver diseases or metabolic disorders. Up to twenty new semisynthetic analogues have been synthesized and studied in order to find promising novel drugs candidates. In order to define the BAs structure-activity relationship, their main physico-chemical properties (solubility, detergency, lipophilicity and affinity with serum albumin) have been measured with validated analytical methodologies. Their metabolism and biodistribution has been studied in “bile fistula rat”, model where each BA is acutely administered through duodenal and femoral infusion and bile collected at different time interval allowing to define the relationship between structure and intestinal absorption and hepatic uptake ,metabolism and systemic spill-over. One of the studied analogues, 6α-ethyl-3α7α-dihydroxy-5β-cholanic acid, analogue of CDCA (INT 747, Obeticholic Acid (OCA)), recently under approval for the treatment of cholestatic liver diseases, requires additional studies to ensure its safety and lack of toxicity when administered to patients with a strong liver impairment. For this purpose, CCl4 inhalation to rat causing hepatic decompensation (cirrhosis) animal model has been developed and used to define the difference of OCA biodistribution in respect to control animals trying to define whether peripheral tissues might be also exposed as a result of toxic plasma levels of OCA, evaluating also the endogenous BAs biodistribution. An accurate and sensitive HPLC-ES-MS/MS method is developed to identify and quantify all BAs in biological matrices (bile, plasma, urine, liver, kidney, intestinal content and tissue) for which a sample pretreatment have been optimized.