3 resultados para Illinois. Division of Natural Resources
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Geochemical mapping is a valuable tool for the control of territory that can be used not only in the identification of mineral resources and geological, agricultural and forestry studies but also in the monitoring of natural resources by giving solutions to environmental and economic problems. Stream sediments are widely used in the sampling campaigns carried out by the world's governments and research groups for their characteristics of broad representativeness of rocks and soils, for ease of sampling and for the possibility to conduct very detailed sampling In this context, the environmental role of stream sediments provides a good basis for the implementation of environmental management measures, in fact the composition of river sediments is an important factor in understanding the complex dynamics that develop within catchment basins therefore they represent a critical environmental compartment: they can persistently incorporate pollutants after a process of contamination and release into the biosphere if the environmental conditions change. It is essential to determine whether the concentrations of certain elements, in particular heavy metals, can be the result of natural erosion of rocks containing high concentrations of specific elements or are generated as residues of human activities related to a certain study area. This PhD thesis aims to extract from an extensive database on stream sediments of the Romagna rivers the widest spectrum of informations. The study involved low and high order stream in the mountain and hilly area, but also the sediments of the floodplain area, where intensive agriculture is active. The geochemical signals recorded by the stream sediments will be interpreted in order to reconstruct the natural variability related to bedrock and soil contribution, the effects of the river dynamics, the anomalous sites, and with the calculation of background values be able to evaluate their level of degradation and predict the environmental risk.
Resumo:
In order to handle Natural disasters, emergency areas are often individuated over the territory, close to populated centres. In these areas, rescue services are located which respond with resources and materials for population relief. A method of automatic positioning of these centres in case of a flood or an earthquake is presented. The positioning procedure consists of two distinct parts developed by the research group of Prof Michael G. H. Bell of Imperial College, London, refined and applied to real cases at the University of Bologna under the coordination of Prof Ezio Todini. There are certain requirements that need to be observed such as the maximum number of rescue points as well as the number of people involved. Initially, the candidate points are decided according to the ones proposed by the local civil protection services. We then calculate all possible routes from each candidate rescue point to all other points, generally using the concept of the "hyperpath", namely a set of paths each one of which may be optimal. The attributes of the road network are of fundamental importance, both for the calculation of the ideal distance and eventual delays due to the event measured in travel time units. In a second phase, the distances are used to decide the optimum rescue point positions using heuristics. This second part functions by "elimination". In the beginning, all points are considered rescue centres. During every interaction we wish to delete one point and calculate the impact it creates. In each case, we delete the point that creates less impact until we reach the number of rescue centres we wish to keep.
Resumo:
Throughout the world, pressures on water resources are increasing, mainly as a result of human activity. Because of their accessibility, groundwater and surface water are the most used reservoirs. The evaluation of the water quality requires the identification of the interconnections among the water reservoirs, natural landscape features, human activities and aquatic health. This study focuses on the estimation of the water pollution linked to two different environmental issues: salt water intrusion and acid mine drainage related to the exploitation of natural resources. Effects of salt water intrusion occurring in the shallow aquifer north of Ravenna (Italy) was analysed through the study of ion- exchange occurring in the area and its variance throughout the year, applying a depth-specific sampling method. In the study area were identified ion exchange, calcite and dolomite precipitation, and gypsum dissolution and sulphate reduction as the main processes controlling the groundwater composition. High concentrations of arsenic detected only at specific depth indicate its connexion with the organic matter. Acid mine drainage effects related to the tin extraction in the Bolivian Altiplano was studied, on water and sediment matrix. Water contamination results strictly dependent on the seasonal variation, on pH and redox conditions. During the dry season the strong evaporation and scarce water flow lead to low pH values, high concentrations of heavy metals in surface waters and precipitation of secondary minerals along the river, which could be released in oxidizing conditions as demonstrated through the sequential extraction analysis. The increase of the water flow during the wet season lead to an increase of pH values and a decrease in heavy metal concentrations, due to dilution effect and, as e.g. for the iron, to precipitation.