4 resultados para IR and Raman spectroscopy
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
FIR spectroscopy is an alternative way of collecting spectra of many inorganic pigments and corrosion products found on art objects, which is not normally observed in the MIR region. Most FIR spectra are traditionally collected in transmission mode but as a real novelty it is now also possible to record FIR spectra in ATR (Attenuated Total Reflectance) mode. In FIR transmission we employ polyethylene (PE) for preparation of pellets by embedding the sample in PE. Unfortunately, the preparation requires heating of the PE in order to produces at transparent pellet. This will affect compounds with low melting points, especially those with structurally incorporated water. Another option in FIR transmission is the use of thin films. We test the use of polyethylene thin film (PETF), both commercial and laboratory-made PETF. ATR collection of samples is possible in both the MIR and FIR region on solid, powdery or liquid samples. Changing from the MIR to the FIR region is easy as it simply requires the change of detector and beamsplitter (which can be performed within a few minutes). No preparation of the sample is necessary, which is a huge advantage over the PE transmission method. The most obvious difference, when comparing transmission with ATR, is the distortion of band shape (which appears asymmetrical in the lower wavenumber region) and intensity differences. However, the biggest difference can be the shift of strong absorbing bands moving to lower wavenumbers in ATR mode. The sometimes huge band shift necessitates the collection of standard library spectra in both FIR transmission and ATR modes, provided these two methods of collecting are to be employed for analyses of unknown samples. Standard samples of 150 pigment and corrosion compounds are thus collected in both FIR transmission and ATR mode in order to build up a digital library of spectra for comparison with unknown samples. XRD, XRF and Raman spectroscopy assists us in confirming the purity or impurity of our standard samples. 24 didactic test tables, with known pigment and binder painted on the surface of a limestone tablet, are used for testing the established library and different ways of collecting in ATR and transmission mode. In ATR, micro samples are scratched from the surface and examined in both the MIR and FIR region. Additionally, direct surface contact of the didactic tablets with the ATR crystal are tested together with water enhanced surface contact. In FIR transmission we compare the powder from our test tablet on the laboratory PETF and embedded in PE. We also compare the PE pellets collected using a 4x beam condenser, focusing the IR beam area from 8 mm to 2 mm. A few samples collected from a mural painting in a Nepalese temple, corrosion products collected from archaeological Chinese bronze objects and samples from a mural paintings in an Italian abbey, are examined by ATR or transmission spectroscopy.
Resumo:
The protein silk fibroin (SF) from the silkworm Bombyx mori is a FDA-approved biomaterial used over centuries as sutures wire. Importantly, several evidences highlighted the potential of silk biomaterials obtained by using so-called regenerated silk fibroin (RSF) in biomedicine, tissue engineering and drug delivery. Indeed, by a water-based protocol, it is possible to obtain protein water-solution, by extraction and purification of fibroin from silk fibres. Notably, RSF can be processed in a variety of biomaterials forms used in biomedical and technological fields, displaying remarkable properties such as biocompatibility, controllable biodegradability, optical transparency, mechanical robustness. Moreover, RSF biomaterials can be doped and/or chemical functionalized with drugs, optically active molecules, growth factors and/or chemicals In this view, activities of my PhD research program were focused to standardize the process of extraction and purification of protein to get the best physical and chemical characteristics. The analysis of the chemo-physical properties of the fibroin involved both the RSF water-solution and the protein processed in film. Chemo-physical properties have been studied through: vibrational (FT-IR and Raman-FT) and optical (absorption and emission UV-VIS) spectroscopy, nuclear magnetic resonance (1H and 13C NMR), thermal analysis and thermo-gravimetric scan (DSC and TGA). In the last year of my PhD, activities were focused to study and define innovative methods of functionalization of the silk fibroin solution and films. Indeed, research program was the application of different methods of manufacturing approaches of the films of fibroin without the use of harsh treatments and organic solvents. New approaches to doping and chemical functionalization of the silk fibroin were studied. Two different methods have been identified: 1) biodoping that consists in the doping of fibroin with optically active molecules through the addition of fluorescent molecules in the standard diet used for the breeding of silkworms; 2) chemical functionalization via silylation.
Resumo:
This thesis was aimed at investigating the physical-chemical properties and the behaviour in physiological environment of two classes of bioceramics: calcium silicate-based dental cements and alumina-based femoral heads for hip joint prostheses. The material characterization was performed using spectroscopic techniques such as that allow to obtain information on the molecular structure of the species and phases present in the analyzed samples. Raman, infrared and fluorescence spectroscopy was principally used. Calcium silicate cements, such as MTA (Mineral Trioxide Aggregate), are hydraulic materials that can set in presence of water: this characteristic makes them suitable for oral surgery and in particular as root-end filling materials. With the aim to improve the properties of commercial MTA cements, several MTA-based experimental formulations have been tested with regard to bioactivity (i.e. apatite forming ability) upon ageing in simulated body fluids. The formation of a bone-like apatite layer may support the integration in bone tissue and represents an essential requirement for osteoconduction and osteoinduction. The spectroscopic studies demonstrated that the experimental materials under study had a good bioactivity and were able to remineralize demineralized dentin. . Bioceramics thanks to their excellent mechanical properties and chemical resistance, are widely used as alternative to polymer (UHMWPE) and metal alloys (Cr-Co) for hip-joint prostesis. In order to investigate the in vivo wear mechanisms of three different generations of commercial bioceramics femoral heads (Biolox®, Biolox® forte, and Biolox® delta), fluorescence and Raman spectroscopy were used to investigate the surface properties and residual stresses of retrieved implants. Spectroscopic results suggested different wear mechanisms in the three sets of retrievals. Since Biolox® delta is a relatively recent material, the Raman results on its retrievals has been reported for the first time allowing to validate the in vitro ageing protocols proposed in the literature to simulate the effects of the in vivo wear.
Resumo:
This thesis work deals, principally, with the development of different chemical protocols ranging from environmental sustainability peptide synthesis to asymmetric synthesis of modified tryptophans to a series of straightforward procedures for constraining peptide backbones without the need for a pre-formed scaffold. Much efforts have been dedicated to the structural analysis in a biomimetic environment, fundamental for predicting the in vivo conformation of compounds, as well as for giving a rationale to the experimentally determined bioactivity. The conformational analyses in solution has been done mostly by NMR (2D gCosy, Roesy, VT, titration experiments, molecular dynamics, etc.), FT-IR and ECD spectroscopy. As a practical application, 3D rigid scaffolds have been employed for the synthesis of biological active compounds based on peptidomimetic and retro-mimetic structures. These mimics have been investigated for their potential as antiflammatory agents and actually the results obtained are very promising. Moreover, the synthesis of Amo ring permitted the development of an alternative high effective synthetic pathway for obtaining Linezolid antibiotic. The final section is, instead, dedicated to the construction of a new biosensor based on zeolite L SAMs functionalized with the integrin ligand c[RGDfK], that has showed high efficiency for the selective detection of tumor cells. Such kind of sensor could, in fact, enable the convenient, non-invasive detection and diagnosis of cancer in early stages, from a few drops of a patient's blood or other biological fluids. In conclusion, the researches described herein demonstrate that the peptidomimetic approach to 3D definite structures, allows unambiguous investigation of the structure-activity relationships, giving an access to a wide range bioactive compounds of pharmaceutical interest to use not only as potential drugs but also for diagnostic and theranostic applications.