6 resultados para INTELLECTUAL DISABILITY

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autism spectrum disorder (ASD) and Intellectual Disability (ID) are complex neuropsychiatric disorders characterized by extensive clinical and genetic heterogeneity and with overlapping risk factors. The aim of my project was to further investigate the role of Copy Numbers Variants (CNVs), identified through genome-wide studies performed by the Autism Geome Project (AGP) and the CHERISH consortium in large cohorts of ASD and ID cases, respectively. Specifically, I focused on four rare genic CNVs, selected on the basis of their impact on interesting ASD/ID candidate genes: a) a compound heterozygous deletion involving CTNNA3, predicted to cause the lack of functional protein; b) a 15q13.3 duplication containing CHRNA7; c) a 2q31.1 microdeletion encompassing KLHL23, SSB and METTL5; d) Lastly, I investigated the putative imprinting regulation of the CADPS2 gene, disrupted by a maternal deletion in two siblings with ASD and ID. This study provides further evidence for the role of CTNNA3, CHRNA7, KLHL23 and CADPS2 as ASD and/or ID susceptibility genes, and highlights that rare genetic variation contributes to disease risk in different ways: some rare mutations, such as those impacting CTNNA3, act in a recessive mode of inheritance, while other CNVs, such as those occurring in the 15q13.3 region, are implicated in multiple developmental and/or neurological disorders possibly interacting with other susceptibility variants elsewhere in the genome. On the other hand, the discovery of a tissue-specific monoallelic expression for the CADPS2 gene, implicates the involvement of epigenetic regulatory mechanisms as risk factors conferring susceptibility to ASD/ID.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

I disturbi dello spettro autistico (DSA) ed il ritardo mentale (RM) sono caratterizzati da un’eziologia genetica complessa ed eterogenea. Grazie ai recenti sviluppi nella ricerca genomica, è stato possibile dimostrare il ruolo di numerose copy number variants (CNVs) nella patogenesi di questi disturbi, anche se nella maggior parte dei casi l’eziologia rimane ancora sconosciuta. Questo lavoro riguarda l’identificazione e la caratterizzazione dei CNVs in famiglie con DSA e RM. E’ stata studiata una microdelezione in 7q31 che coinvolge i geni IMMP2L e DOCK4, trasmessa dalla madre con dislessia a due figli con autismo ed una figlia con dislessia. Nella stessa famiglia segrega una seconda microdelezione in 2q14 che inattiva il gene CNTNAP5 ed è trasmessa dal padre (con tratti autistici) ai due figli con autismo. Abbiamo quindi ipotizzato che i geni DOCK4 e CNTNAP5 potessero essere implicati, rispettivamente, nella suscettibilità a dislessia e DSA. Lo screening di numerosi individui affetti ha supportato la nostra ipotesi, con l’identificazione di una nuova microdelezione di DOCK4 che segrega con la dislessia, e 3 nuove varianti missenso in CNTNAP5 in individui con autismo. Dall’analisi genomica comparativa su array (aCGH) di individui con RM, è stata identificata una delezione nella regione 7q31.32, che coinvolge il gene CADPS2, in due fratelli con RM e tratti autistici, probabilmente ereditata dalla madre. Lo screening di mutazione di questo gene in individui con autismo o RM, ha portato all’identificazione di 3 varianti non sinonime, assenti nei controlli, ed ereditate per via materna. Poiché CADPS2 risiede in una regione genomica che contiene loci soggetti ad imprinting, abbiamo ipotizzato che il gene CADPS2 possa essere anch’esso caratterizzato da imprinting, con espressione monoallelica materna. Lo studio di espressione di CADPS2 in cellule del sangue ha avvalorato questa ipotesi, implicando perciò CADPS2 come un nuovo gene di suscettibilità per il RM e DSA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To fully re-evaluate patients with early-onset epilepsy and intellectual disability with neurological, neurophysiological and neuropsychological examination in order to contribute to expanding the phenotypic spectrum of known epileptic encephalopathy (EE)-related genes and to identify novel genetic defects underlying EEs. Methods: We recruited patients with epilepsy and intellectual disability (ID) referring to our Epilepsy Centre. Patients underwent full clinical and neurophysiologic evaluation. When possible they underwent neuroradiologic investigations. Selected cases also underwent genetic analysis. Results: We recruited 200 patients (109 M, 91 F; mean age 36 years old). Mean age at epilepsy onset was 4 years old. The degree of ID was borderline in 4.5% of patients, mild in 25%, moderate in 38% and severe in 32.5%. EEG showed epileptiform abnormalities in 79.5% of patients. One hundred and thirty-one patients out of the 200 recruited (65.5%) did not have an aetiological diagnosis. All the patients underwent full clinical reassessment and when necessary they performed neuroradiologic and genetic investigations as well. We identified 35 patients with a genetic aetiology. In 8 cases a structural brain lesion was observed. In 33 patients, a genetic aetiology was identified. In 2 patients with drug-resistant seizures video-EEG allowed the identification of non-epileptic seizures, and in one patient we discontinued anti-epileptic drugs. In these patients, the aetiological diagnosis was made after 30 years (range 9-60 years) from the disease onset. Conclusions: In a population of 200 adult patients with epilepsy and ID, an aetiological cause was identified in 45 patients after 30 years from the disease onset. Aetiological diagnosis, especially if genetic, has significant positive implications for patients, even if it has been made after years from the beginning of the disease. Benefits include better-focused antiepileptic drug (AED) choice, sparing of further unnecessary investigations and improved knowledge of comorbidities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental disease caused by mutations in the CDKL5 gene, characterized by early-onset epileptic seizures, intellectual disability, motor and visual impairment and respiratory dysregulation. Although pharmacological treatments are used to control seizures, there is currently no cure to ameliorate symptoms for CDD. Albeit delivery of a wild-type copy of the mutated gene to cells represents the most curative approach for a monogenic disease, proof-of-concept studies highlight significant efficacy caveats for brain gene therapy. The major one regards the low efficiency of gene delivery to the CNS by viral vectors. We used a secretable Igk-TATk-CDKL5 protein to enhance the efficiency of a gene therapy for CDD. In view of the properties of the Igk-chain leader sequence, the TATk-CDKL5 protein produced by infected cells is secreted via constitutive secretory pathways. Importantly, due to the transduction property of the TATk peptide, the secreted CDKL5 protein is internalized by cells. We compared the effects of a CDKL5 gene therapy with an IgK-TATk-CDKL5 gene therapy in a Cdkl5 KO mouse model to validate whether the Igk-TATk-CDKL5 approach significantly improve the therapeutic efficacy. We found that, although AAVPHP.B_Igk-TATk-CDKL5 and AAVPHP.B_CDKL5 vectors had similar brain infection efficiency, the AAVPHP.B_Igk-TATk-CDKL5 vector led to a higher CDKL5 protein replacement and Cdkl5 KO mice treated with the AAVPHP.B_Igk-TATk-CDKL5 vector showed a behavioral and neuroanatomical improvement in comparison with Cdkl5 KO mice treated with the AAVPHP.B_CDKL5 vector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Down syndrome (DS) or trisomy 21 (T21) is the most common genetic cause of intellectual disability (ID). Subjects with DS are characterized by complex and variable clinical features including intellectual disability (ID) and craniofacial dysmorphisms. The aim of the thesis is to uncover genotype-phenotype relationships in DS possibly useful to devise therapies based on molecular and cellular mechanisms. In this work, we have investigated different aspects of DS: - we have collected clinical data of children with DS and we have evaluated the cognitive impairment through specific cognitive tests - we have analysed genomics of DS through the study of partial trisomy (PT21) cases. We have described new PT21 cases confirming the hypothesis of the highly restricted DS critical region (HR-DSCR) recently identified as the minimal region whose duplication is shared by all PT21 subjects diagnosed with DS, while it is absent in all PT21 non-DS subjects. Moreover, we have characterized new transcripts included in the HR-DSCR; - we have studied gene expression through RNAseq in blood cells of children with DS; -metabolic alterations in plasma of children with DS were identified through different methods: Nuclear Magnetic resonance, routine blood exams performed during the follow up of the subjects and enzyme-linked immunosorbent assay (ELISA); - to test possible correlations between specific Hsa21 regions and alterations in transcriptomics and metabolomics, we have used trisomic iPSCs and differentiated them into neuronal derivatives. Significant alterations in gene expression and metabolic profiles have been identified, as well as significant correlations with clinical and cognitive aspects. Specific genes and the HR-DSCR may play a role in these alterations: cell models need to be developed to investigate this role. Neural derivatives from trisomic iPSCs are a promising model to better understand genotype-phenotype correlations in DS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD), a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. To date, little is known about the etiology of CDD and no therapies are available. When overactivated in response to neuronal damage and genetic or environmental factors, microglia – the brain macrophages – cause damage to neighboring neurons by producing neurotoxic factors and pro-inflammatory molecules. Importantly, overactivated microglia have been described in several neurodegenerative and neurodevelopmental disorders, suggesting that active neuroinflammation may account for the compromised neuronal survival and/or brain development observed in these pathologies. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether it plays a causative or exacerbating role in the pathophysiology of CDD. Here, we show evidence of a chronic microglia overactivation status in the brain of Cdkl5 KO mice, characterized by alterations in microglial cell number/morphology and increased pro-inflammatory gene expression. We found that the neuroinflammatory process is already present in the postnatal period in Cdkl5 KO mice and worsens during aging. Remarkably, by restoring microglia alterations, treatment with luteolin, a natural anti-inflammatory flavonoid, promotes neuronal survival in the brain of Cdkl5 KO mice since it counteracts hippocampal neuron cell death and protects neurons from NMDA-induced excitotoxic damage. In addition, through the restoration of microglia alterations, luteolin treatment also increases hippocampal neurogenesis and restores dendritic spine maturation and dendritic arborization of hippocampal and cortical pyramidal neurons in Cdkl5 KO mice, leading to improved behavioral performance. These findings highlight new insights into the CDD pathophysiology and provide the first evidence that therapeutic approaches aimed at counteracting neuroinflammation could be beneficial in CDD.