4 resultados para INSULIN AUTOANTIBODIES
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
A large body of literature documents in both mice and Drosophila the involvement of Insulin pathway in growth regulation, probably due to its role in glucose and lipid import, nutrient storage, and translation of RNAs implicated in ribosome biogenesis (Vanhaesebroeck et al. 2001). Moreover several lines of evidence implicate this pathway as a causal factor in cancer (Sale, 2008; Zeng and Yee 2007; Hursting et al., 2007; Chan et al., 2008). With regards to Myc, studies in cell culture have implied this family of transcription factors as regulators of the cell cycle that are rapidly induced in response to growth factors. Myc is a potent oncogene, rearranged and overexpressed in a wide range of human tumors and necessary during development. Its conditional knock-out in mice results in reduction of body weight due to defect in cell proliferation (Trumpp et al. 2001). Evidence from in vivo studies in Drosophila and mammals suggests a critical function for myc in cell growth regulation (Iritani and Eisenman 1999; Johnston et al. 1999; Kim et al. 2000; de Alboran et al. 2001; Douglas et al. 2001). This role is supported by our analysis of Myc target genes in Drosophila, which include genes involved in RNA binding, processing, ribosome biogenesis and nucleolar function (Orain et al 2003, Bellosta et al., 2005, Hulf et al, 2005). The fact that Insulin signaling and Myc have both been associated with growth control suggests that they may interact with each other. However, genetic evidence suggesting that Insulin signaling regulates Myc in vivo is lacking. In this work we were able to show, for the first time, a direct modulation of dMyc in response to Insulin stimulation/silencing both in vitro and in vivo. Our results suggest that dMyc up-regulation in response to DILPs signaling occurs both at the mRNA and potein level. We believe dMyc protein accumulation after Insulin signaling activation is conditioned to AKT-dependent GSK3β/sgg inactivation. In fact, we were able to demonstate that dMyc protein stabilization through phosphorylation is a conserved feature between Drosophila and vertebrates and requires multiple events. The final phosphorylation step, that results in a non-stable form of dMyc protein, ready to be degraded by the proteasome, is performed by GSK3β/sgg kinase (Sears, 2004). At the same time we demonstrated that CKI family of protein kinase are required to prime dMyc phosphorylation. DILPs and TOR/Nutrient signalings are known to communicate at several levels (Neufeld, 2003). For this reason we further investigated TOR contribution to dMyc-dependent growth regulation. dMyc protein accumulates in S2 cells after aminoacid stimulation, while its mRNA does not seem to be affected upon TORC1 inhibition, suggesting that the Nutrient pathway regulates dMyc mostly post-transcriptionally. In support to this hypothesis, we observed a TORC1-dependent GSK3β/sgg inactivation, further confirming a synergic effect of DILPs and Nutrients on dMyc protein stability. On the other hand, our data show that Rheb but not S6K, both downstream of the TOR kinase, contributes to the dMyc-induced growth of the eye tissue, suggesting that Rheb controls growth independently of S6K.. Moreover, Rheb seems to be able to regulate organ size during development inducing cell death, a mechanism no longer occurring in absence of dmyc. These observations suggest that Rheb might control growth through a new pathway independent of TOR/S6K but still dependent on dMyc. In order to dissect the mechanism of dMyc regulation in response to these events, we analyzed the relative contribution of Rheb, TOR and S6K to dMyc expression, biochemically in S2 cells and in vivo in morphogenetic clones and we further confirmed an interplay between Rheb and Myc that seems to be indipendent from TOR. In this work we clarified the mechanisms that stabilize dMyc protein in vitro and in vivo and we observed for the first time dMyc responsiveness to DILPs and TOR. At the same time, we discovered a new branch of the Nutrient pathway that appears to drive growth through dMyc but indipendently from TOR. We believe our work shed light on the mechanisms cells use to grow or restrain growth in presence/absence of growth promoting cues and for this reason it contributes to understand the physiology of growth control.
Resumo:
Introduction: Anti-TNF-alfa therapy has been effective in the treatment of patients with refractory psoriasis and psoriasic arthritis. However, the risk of developing autoantibodies in these patients undergoing this therapy is not clear. Objective: To evaluate the induction of specific autoantibodies after anti-TNFα therapy in patients with psoriasis and psoriasic arthritis and, to evaluate the influence of the use of methotrexate on the values of autoantibodies developed during this therapy. Patients and methods: Serum samples from 120 patients, obtained before(baseline) the introduction of anti-TNF-alpha therapy and approximately each 3-6 months during the therapy.O f these 120 patients, 113 were found negative for autoantibodies before starting anti -TNFalpha therapy, 7 were found positive for ANA. The analysis included detection of antinuclear antibodies (ANA) and anti-dsDNA antibodies (indirect immunofluorescence on Hep-2 cells and Crithidia luciliae, respectively); anti extractable nuclear antigens antibodies( ENA)(ELISA). RESULTS: Infliximab is associated with the highest occurrence rate of ANA, anti-dsDNA, ENA with approximately 69,2%, 11,5%, 7,6% of patients treated testing positive. In comparison, only 20%, 6,6%, 2,2% of patients treated with Adalimumab, and 19%, 2,3%, 2,3% of patients treated with Etanercept were positive for ANA, Anti-dsDNA, ENA respectively. As regard the seven patients who were positive at baseline, six of them (85.7%) in addition to being remained positive during the therapy they have also increased the autoantibodies ’s titers. Conclusion: our study have shown that Infliximab is associated with the highest rate of autoantibodies. The concomitant treatment with methotrexate did not modify the titers of autoantibodies developed during the therapy anti-TNFalph. The incidence of ANA, anti-dsDNA antibodies did not correlate with development of Lupus-like syndromes. The difference in the frequency of autoantibodies between psoriasis and psoriatic arthritis was not statistically significant (p = 0.867).
Resumo:
Physiologically during puberty and adolescence, when juvenile acne usually appears, the response to a glucose load is increased if compared to the one observed in adult and at pre-pubertal age, while insulin sensitivity is reduced. Insulin is a hormone that acts at different levels along the axis which controls the sex hormones. It increases the release of LH and FSH by pituitary gland, stimulates the synthesis of androgens in the gonads and stimulates the synthesis of androgenic precursors in adrenal glands. Finally, it acts in the liver by inhibiting the synthesis of Sex Hormone Binding Globulin (SHBG). Insulin is also able to act directly on the production of sebum and amplify the effects of Iinsulin Growth Factor-1 in the skin, inhibiting the synthesis of its binding protein (IGF Binding Protein-1). In female subjects with acne and Polycystic Ovary Syndrome (PCOS) insulin resistance is a well known pathogenetic factor, while the relationship between acne and insulin resistance has been poorly investigated in males so far. The purpose of this study is to investigate the correlation between insulin resistance and acne in young males who do not respond to common therapies. Clinical and biochemical parameters of glucose, lipid metabolism, androgens and IGF-1 were evaluated. Insulin resistance was estimated by Homeostasis Model assessment (HOMA-IR) and Oral Glucose Tolerance Test was also performed. We found that subjects with acne had higher Sistolic and Diastolic Blood Pressure, Waist/Hip Ratio, Waist Circumference, 120' OGTT serum insulin and serum IGF-1 and lower HDL-cholesterol than subjects of comparable age and gender without acne. The results thus obtained confirmed what other authors have recently reported about a metabolic imbalance in young males with acne. Furthermore, these results support the hypothesis that insulin resistance might play an important role in the pathogenesis of treatment-resistant acne in males.