2 resultados para INFLATED DISTRIBUTIONS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Non-linear effects are responsible for peculiar phenomena in charged particles dynamics in circular accelerators. Recently, they have been used to propose novel beam manipulations where one can modify the transverse beam distribution in a controlled way, to fulfil the constraints posed by new applications. One example is the resonant beam splitting used at CERN for the Multi-Turn Extraction (MTE), to transfer proton beams from PS to SPS. The theoretical description of these effects relies on the formulation of the particle's dynamics in terms of Hamiltonian systems and symplectic maps, and on the theory of adiabatic invariance and resonant separatrix crossing. Close to resonance, new stable regions and new separatrices appear in the phase space. As non-linear effects do not preserve the Courant-Snyder invariant, it is possible for a particle to cross a separatrix, changing the value of its adiabatic invariant. This process opens the path to new beam manipulations. This thesis deals with various possible effects that can be used to shape the transverse beam dynamics, using 2D and 4D models of particles' motion. We show the possibility of splitting a beam using a resonant external exciter, or combining its action with MTE-like tune modulation close to resonance. Non-linear effects can also be used to cool a beam acting on its transverse beam distribution. We discuss the case of an annular beam distribution, showing that emittance can be reduced modulating amplitude and frequency of a resonant oscillating dipole. We then consider 4D models where, close to resonance, motion in the two transverse planes is coupled. This is exploited to operate on the transverse emittances with a 2D resonance crossing. Depending on the resonance, the result is an emittance exchange between the two planes, or an emittance sharing. These phenomena are described and understood in terms of adiabatic invariance theory.
Resumo:
In this work, we explore and demonstrate the potential for modeling and classification using quantile-based distributions, which are random variables defined by their quantile function. In the first part we formalize a least squares estimation framework for the class of linear quantile functions, leading to unbiased and asymptotically normal estimators. Among the distributions with a linear quantile function, we focus on the flattened generalized logistic distribution (fgld), which offers a wide range of distributional shapes. A novel naïve-Bayes classifier is proposed that utilizes the fgld estimated via least squares, and through simulations and applications, we demonstrate its competitiveness against state-of-the-art alternatives. In the second part we consider the Bayesian estimation of quantile-based distributions. We introduce a factor model with independent latent variables, which are distributed according to the fgld. Similar to the independent factor analysis model, this approach accommodates flexible factor distributions while using fewer parameters. The model is presented within a Bayesian framework, an MCMC algorithm for its estimation is developed, and its effectiveness is illustrated with data coming from the European Social Survey. The third part focuses on depth functions, which extend the concept of quantiles to multivariate data by imposing a center-outward ordering in the multivariate space. We investigate the recently introduced integrated rank-weighted (IRW) depth function, which is based on the distribution of random spherical projections of the multivariate data. This depth function proves to be computationally efficient and to increase its flexibility we propose different methods to explicitly model the projected univariate distributions. Its usefulness is shown in classification tasks: the maximum depth classifier based on the IRW depth is proven to be asymptotically optimal under certain conditions, and classifiers based on the IRW depth are shown to perform well in simulated and real data experiments.