5 resultados para INDIRECT QUANTIFICATION
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
3D video-fluoroscopy is an accurate but cumbersome technique to estimate natural or prosthetic human joint kinematics. This dissertation proposes innovative methodologies to improve the 3D fluoroscopic analysis reliability and usability. Being based on direct radiographic imaging of the joint, and avoiding soft tissue artefact that limits the accuracy of skin marker based techniques, the fluoroscopic analysis has a potential accuracy of the order of mm/deg or better. It can provide fundamental informations for clinical and methodological applications, but, notwithstanding the number of methodological protocols proposed in the literature, time consuming user interaction is exploited to obtain consistent results. The user-dependency prevented a reliable quantification of the actual accuracy and precision of the methods, and, consequently, slowed down the translation to the clinical practice. The objective of the present work was to speed up this process introducing methodological improvements in the analysis. In the thesis, the fluoroscopic analysis was characterized in depth, in order to evaluate its pros and cons, and to provide reliable solutions to overcome its limitations. To this aim, an analytical approach was followed. The major sources of error were isolated with in-silico preliminary studies as: (a) geometric distortion and calibration errors, (b) 2D images and 3D models resolutions, (c) incorrect contour extraction, (d) bone model symmetries, (e) optimization algorithm limitations, (f) user errors. The effect of each criticality was quantified, and verified with an in-vivo preliminary study on the elbow joint. The dominant source of error was identified in the limited extent of the convergence domain for the local optimization algorithms, which forced the user to manually specify the starting pose for the estimating process. To solve this problem, two different approaches were followed: to increase the optimal pose convergence basin, the local approach used sequential alignments of the 6 degrees of freedom in order of sensitivity, or a geometrical feature-based estimation of the initial conditions for the optimization; the global approach used an unsupervised memetic algorithm to optimally explore the search domain. The performances of the technique were evaluated with a series of in-silico studies and validated in-vitro with a phantom based comparison with a radiostereometric gold-standard. The accuracy of the method is joint-dependent, and for the intact knee joint, the new unsupervised algorithm guaranteed a maximum error lower than 0.5 mm for in-plane translations, 10 mm for out-of-plane translation, and of 3 deg for rotations in a mono-planar setup; and lower than 0.5 mm for translations and 1 deg for rotations in a bi-planar setups. The bi-planar setup is best suited when accurate results are needed, such as for methodological research studies. The mono-planar analysis may be enough for clinical application when the analysis time and cost may be an issue. A further reduction of the user interaction was obtained for prosthetic joints kinematics. A mixed region-growing and level-set segmentation method was proposed and halved the analysis time, delegating the computational burden to the machine. In-silico and in-vivo studies demonstrated that the reliability of the new semiautomatic method was comparable to a user defined manual gold-standard. The improved fluoroscopic analysis was finally applied to a first in-vivo methodological study on the foot kinematics. Preliminary evaluations showed that the presented methodology represents a feasible gold-standard for the validation of skin marker based foot kinematics protocols.
Resumo:
Advances in biomedical signal acquisition systems for motion analysis have led to lowcost and ubiquitous wearable sensors which can be used to record movement data in different settings. This implies the potential availability of large amounts of quantitative data. It is then crucial to identify and to extract the information of clinical relevance from the large amount of available data. This quantitative and objective information can be an important aid for clinical decision making. Data mining is the process of discovering such information in databases through data processing, selection of informative data, and identification of relevant patterns. The databases considered in this thesis store motion data from wearable sensors (specifically accelerometers) and clinical information (clinical data, scores, tests). The main goal of this thesis is to develop data mining tools which can provide quantitative information to the clinician in the field of movement disorders. This thesis will focus on motor impairment in Parkinson's disease (PD). Different databases related to Parkinson subjects in different stages of the disease were considered for this thesis. Each database is characterized by the data recorded during a specific motor task performed by different groups of subjects. The data mining techniques that were used in this thesis are feature selection (a technique which was used to find relevant information and to discard useless or redundant data), classification, clustering, and regression. The aims were to identify high risk subjects for PD, characterize the differences between early PD subjects and healthy ones, characterize PD subtypes and automatically assess the severity of symptoms in the home setting.
Resumo:
Questa tesi descrive lo sviluppo di un elettrodo modificato con un polimero isolante per la determinazione indiretta del radicale OH. I polimeri testati sono stati polifenolo, polipirrolo e polipirrolo sovraoossidato ed il primo è risultato quello con le migliori prestazioni. Il film di modificante è stato depositato per elettropolimerizzazione del fenolo in ambiente acido, su un elettrodo di carbone vetroso (GC) ed è risultato isolante e perfettamente adeso al GC, impedendo il trasferimento di carica alle più comuni sonde redox. L’attacco dei radicali OH, generati dalla reazione di Fenton o dalla fotolisi di H2O2, rimuove parzialmente il polimero dal GC, ripristinando parzialmente il comportamento conduttore dell’elettrodo. L’entità della degradazione del film polifenolico è stata valutata sfruttando la corrente relativa alla sonda redox Ru(NH3)63+, che rappresenta il segnale analitico per la determinazione del radicale OH. L’elettrodo è stato impiegato per stimare le prestazioni di foto catalizzatori a base di nanoparticelle di TiO2, ottenendo risultati correlati a quelli ricavati da un metodo HPLC. Inoltre esso è stato usato per sviluppare una nuova procedura per la determinazione della capacità di scavenging verso i radicali OH, che è stata applicata all’analisi di composti puri e campioni reali. I risultati erano confrontabili con quelli determinati con metodiche standardizzate, comunemente impiegate per la determinazione della capacità antiossidante. Inoltre è stato condotto uno studio riguardante la modifica di un elettrodo di platino con un idrossido misto a strati a base di cobalto e alluminio (LDH). In particolare si sono valutati gli effetti di diversi pretrattamenti del Pt sulle caratteristiche e prestazioni elettrocatalitiche del film di LDH nei confronti dell’ossidazione di anilina, fenolo e acido salicilico. Questi composti possono essere impiegati come molecole sonda per la determinazione del radicale OH e rivestono interesse da un punto di vista elettroanalitico perché portano facilmente alla passivazione della superficie di Pt.
Resumo:
The research field of the Thesis is the evaluation of motor variability and the analysis of motor stability for the assessment of fall risk. Since many falls occur during walking, a better understanding of motor stability could lead to the definition of a reliable fall risk index aiming at measuring and assessing the risk of fall in the elderly, in the attempt to prevent traumatic events. Several motor variability and stability measures are proposed in the literature, but still a proper methodological characterization is lacking. Moreover, the relationship between many of these measures and fall history or fall risk is still unknown, or not completely clear. The aim of this thesis is hence to: i) analyze the influence of experimental implementation parameters on variability/stability measures and understand how variations in these parameters affect the outputs; ii) assess the relationship between variability/stability measures and long- short-term fall history. Several implementation issues have been addressed. Following the need for a methodological standardization of gait variability/stability measures, highlighted in particular for orbital stability analysis through a systematic review, general indications about implementation of orbital stability analysis have been showed, together with an analysis of the number of strides and the test-retest reliability of several variability/stability numbers. Indications about the influence of directional changes on measures have been provided. The association between measures and long/short-term fall history has also been assessed. Of all the analyzed variability/stability measures, Multiscale entropy and Recurrence quantification analysis demonstrated particularly good results in terms of reliability, applicability and association with fall history. Therefore, these measures should be taken in consideration for the definition of a fall risk index.
Non-normal modal logics, quantification, and deontic dilemmas. A study in multi-relational semantics
Resumo:
This dissertation is devoted to the study of non-normal (modal) systems for deontic logics, both on the propositional level, and on the first order one. In particular we developed our study the Multi-relational setting that generalises standard Kripke Semantics. We present new completeness results concerning the semantic setting of several systems which are able to handle normative dilemmas and conflicts. Although primarily driven by issues related to the legal and moral field, these results are also relevant for the more theoretical field of Modal Logic itself, as we propose a syntactical, and semantic study of intermediate systems between the classical propositional calculus CPC and the minimal normal modal logic K.