8 resultados para INCREASED CIRCULATING LEVELS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background: Circulating tumor cells (CTCs) and circulating free plasma DNA (FPDNA) have been proposed as biomarkers predictive of outcome and response to therapy in solid tumors. We investigated the multiple associations of the presence of CTC and the levels of FPDNA with the outcome and/or the response to chemotherapy in patients with localized breast cancer (LBC), metastatic breast cancer (MBC) and advanced ovarian cancer (AOC). Experimental Design: Blood samples were collected before (baseline), during and after therapy in 40 LBC and 50 AOC patients treated with neo-adjuvant chemotherapy. In 20 MBC patients blood was sampled at baseline and every each cycle of adjuvant chemotherapy. Real time PCR was applied to quantify FPDNA using the Quantifiler Human Quantification kit and CTCs through the detection of tumor-cell specific mRNA levels with or without epithelial enrichment. Results: At baseline CTCs were detected in 90% MBC, 42.5% LBC and 33% AOC patients respectively. The presence of baseline CTC was significantly associated with shorter overall survival (OS) in MBC and AOC patients, and shorter progression free survival (PFS) in LBC patients. Presence of CTCs at the end of neo-adjuvant chemotherapy was detected in 42% LBC and 18% AOC patients and was associated with shorter PFS and OS only in LBC. Increased FPDNA levels at baseline were found in 65% MBC, 17.5% LBC and 76% AOC patients but never related to OS. Baseline FPDNA high levels were associated with shorter PFS only in LBC patients. High FPDNA levels after neo-adjuvant chemotherapy were detected in 57% LBC and 48% AOC patients. Increased FPDNA after neo-adjuvant was associated with response to therapy and shorter PFS in AOC patients. Conclusions: Detection of CTCs may represent a prognostic and predictive biomarker in LBC, MBC and AOC. Quantification of FPDNA could be useful for monitoring response to therapy in AOC patients.
Resumo:
The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.
Resumo:
The subject of this work concerns the study of the immigration phenomenon, with emphasis on the aspects related to the integration of an immigrant population in a hosting one. Aim of this work is to show the forecasting ability of a recent finding where the behavior of integration quantifiers was analyzed and investigated with a mathematical model of statistical physics origins (a generalization of the monomer dimer model). After providing a detailed literature review of the model, we show that not only such a model is able to identify the social mechanism that drives a particular integration process, but it also provides correct forecast. The research reported here proves that the proposed model of integration and its forecast framework are simple and effective tools to reduce uncertainties about how integration phenomena emerge and how they are likely to develop in response to increased migration levels in the future.
Resumo:
Helicobacter pylori is one of the most widespread and successful human pathogens, colonizing half of the population stomach mucosa and causing gastric malignancies in 1% of carriers. Due to the increasing number of antimicrobial-resistant strains, in 2017 the WHO included H. pylori among pathogens that pose a major threat for humankind. In this study, we propose as a molecular target for novel antimicrobial strategies HP1043, an orphan response regulator essential for the viability of H. pylori as it orchestrates all the most important cellular processes. Amino acids most relevant for HP1043 dimerization and target DNA recognition were identified and used to guide an in-silico protein-DNA docking and generate a high-resolution structural model of the interacting HP1043 dimer and its target DNA. The model was experimentally validated and exploited to carry out a virtual screening of small molecule libraries, identifying 8 compounds potentially able to interfere with HP1043 function and likely block H. pylori infection. A second line of research aimed at the characterization of the regulatory function of HP1043 and the tight mechanisms of regulation of hp1043 gene expression. In particular, we proved a direct interaction between HP1043 and the housekeeping sigma80 factor of the RNA polymerase. A conditional mutant H. pylori strain overexpressing a synthetic copy of the hp1043 gene altered in nucleotide sequence yet encoding the wild-type protein was generated, achieving increased intracellular levels of HP1043. However, overexpression of HP1043 did not result in an upregulation of target genes transcription nor modulation of hp1043 transcript levels, pinpointing the existence of multiple overlayed mechanisms of regulation that affect both protein levels and functionality as well as maintain steady the amount of hp1043 transcript. Finally, we proposed that a mechanism of post-transcriptional regulation could depend on an antisense transcript to the hp1043 gene which was validated in two different strains.
Resumo:
INTRODUZIONE Pochi studi in Letteratura hanno indagato la correlazione tra la sintomatologia dolorosa associata all’interruzione farmacologica di gravidanza (IVG) e i livelli d’ansia pre-trattamento. L’obiettivo primario del nostro studio è stato di valutare la correlazione tra la sintomatologia dolorosa in corso di IVG farmacologica e i livelli d’ansia pre-trattamento. Inoltre, sono stati indagati i fattori predittivi di dolore e la correlazione con l’epoca gestazionale. MATERIALI E METODI È stato condotto uno studio osservazionale, prospettico, multicentrico presso l’Unità Operativa di Ostetricia e Ginecologia dell’Azienda USL e presso l’Unità Operativa di Ginecologia dell’IRCCS Sant’Orsola Malpighi di Bologna. Sono state incluse le pazienti sottoposte a IVG farmacologica tra giugno 2021 e novembre 2021, che rispettassero i criteri di inclusione ed esclusione. Sono stati somministrati 5 questionari (GHQ-12, GAD-7, STAI-6, VAS) e raccolti i dati anamnestici ed ecografici. I potenziali fattori di rischio sono stati, quindi, selezionati per l’inclusione nell'analisi di regressione multivariata. RISULTATI Delle 242 pazienti incluse, il 38,0% ha riferito una sintomatologia dolorosa severa (VAS >70). Dall’analisi di regressione multivariata, la dismenorrea intensa è risultata essere il fattore di rischio più forte per il dolore (OR = 6,30, IC 95% 2,66 – 14,91), seguita da alti livelli di ansia valutati mediante il punteggio del GHQ-12 > 9 (OR = 3,33, IC 95% 1,43 – 7,76). Al contrario, la nostra analisi ha confermato che un precedente parto vaginale rappresentava una caratteristica protettiva contro il dolore (OR 0,26, IC 95% 0,14 – 0,50). CONCLUSIONI Nel nostro studio alti livelli d’ansia pre-trattamento e la dismenorrea sono associati ad intensa sintomatologia dolorosa, mentre il parto vaginale è risultato protettivo. L’IVG farmacologica è una metodica efficace e sicura, ma spesso associata a sintomatologia dolorosa. È quindi fondamentale delineare fattori di predittivi di dolore ed individuare le pazienti a maggior rischio a cui somministrare un’idonea terapia antalgica.
Resumo:
In the last two decades, authors have begun to expand classical stochastic frontier (SF) models in order to include also some spatial components. Indeed, firms tend to concentrate in clusters, taking advantage of positive agglomeration externalities due to cooperation, shared ideas and emulation, resulting in increased productivity levels. Until now scholars have introduced spatial dependence into SF models following two different paths: evaluating global and local spatial spillover effects related to the frontier or considering spatial cross-sectional correlation in the inefficiency and/or in the error term. In this thesis, we extend the current literature on spatial SF models introducing two novel specifications for panel data. First, besides considering productivity and input spillovers, we introduce the possibility to evaluate the specific spatial effects arising from each inefficiency determinant through their spatial lags aiming to capture also knowledge spillovers. Second, we develop a very comprehensive spatial SF model that includes both frontier and error-based spillovers in order to consider four different sources of spatial dependence (i.e. productivity and input spillovers related to the frontier function and behavioural and environmental correlation associated with the two error terms). Finally, we test the finite sample properties of the two proposed spatial SF models through simulations, and we provide two empirical applications to the Italian accommodation and agricultural sectors. From a practical perspective, policymakers, based on results from these models, can rely on precise, detailed and distinct insights on the spillover effects affecting the productive performance of neighbouring spatial units obtaining interesting and relevant suggestions for policy decisions.
Resumo:
This PhD project aimed to (i) investigate the effects of three nutritional strategies (supplementation of a synbiotic, a muramidase, or arginine) on growth performance, gut health, and metabolism of broilers fed without antibiotics under thermoneutral and heat stress conditions and to (ii) explore the impacts of heat stress on hypothalamic regulation of feed intake in three broiler lines from diverse stages of genetic selection and in the red jungle fowl, the ancestor of domestic chickens. Synbiotic improved feed efficiency and footpad health, increased Firmicutes and reduced Bacteroidetes in the ceca of birds kept in thermoneutral conditions, while did not mitigate the impacts of heat stress on growth performance. Under optimal thermal conditions, muramidase increased final body weight and reduced cumulative feed intake and feed conversion ratio in a dose-dependent way. The highest dose reduced the risk of footpad lesions, cecal alpha diversity, the Firmicutes to Bacteroidetes ratio, and butyrate producers, increased Bacteroidaceae and Lactobacillaceae, plasmatic levels of bioenergetic metabolites, and reduced the levels of pro-oxidant metabolites. The same dose, however, failed to reduce the effects of heat stress on growth performance. Arginine supplementation improved growth rate, final body weight, and feed efficiency, increased plasmatic levels of arginine and creatine and hepatic levels of creatine and essential amino acids, reduced alpha diversity, Firmicutes, and Proteobacteria (especially Escherichia coli), and increased Bacteroidetes and Lactobacillus salivarius in the ceca of thermoneutral birds. No arginine-mediated attenuation of heat stress was found. Heat stress altered protein metabolism and caused the accumulation of antioxidant and protective molecules in oxidative stress-sensitive tissues. Arginine supplementation, however, may have partially counterbalanced the effects of heat stress on energy homeostasis. Stable gene expression of (an)orexigenic neuropeptides was found in the four chicken populations studied, but responses to hypoxia and heat stress appeared to be related to feed intake regulation.
Resumo:
Nowadays obesity can be defined as a global epidemic. The precise identification of circulating biomarkers involved in this pathology could be essential to early diagnose potential co-morbidities and to better address the development of future therapeutic strategies. Published evidences show that circulating steroid hormones and endocannabinoids might have a role in the physiopathology of obesity; however, a precise and reliable quantification of these molecules is still lacking. In the first part of the present thesis, we developed a sensitive, specific and accurate quantification method for nine steroid hormones using a liquid chromatography tandem mass spectrometry (LC-MS/MS) system. This method has been used first for a comparative study with immunoassays, currently used in the clinical practice to quantify these molecules and then to redefine circulating reference intervals in healthy subjects. Furthermore, we measured circulating steroid hormones in three groups of subjects: normo-weight, over-weight and obese, defining different steroid hormones profiles depending on the obesity state. The role of circulating endocannabinoids in humans is still unclear, however there are several evidences concerning their involvement in obesity. In the second part of the thesis, we determined changes of circulating endocannabinoids in obese patients after a weight loss induced by bariatric surgery, currently the most effective long-term treatment for obesity, using LC/MS-MS. We measured basal and dynamic endocannabinoids plasma levels in 12 patients with severe obesity before, one month after and six months after the Roux-en-Y gastric bypass intervention, currently one of the most performed types of bariatric surgery. All together the findings illustrated in this thesis project will help better define the role of steroid hormones and endocannabinoids in the framework of obesity in humans and the role that each type of molecule might have in its pathophysiology.