5 resultados para ICT INDICATORS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general objective of this research is to explore theories and methodologies of sustainability indicators, environmental management and decision making disciplines with the operational purpose of producing scientific, robust and relevant information for supporting system understanding and decision making in real case studies. Several tools have been applied in order to increase the understanding of socio-ecological systems as well as providing relevant information on the choice between alternatives. These tools have always been applied having in mind the complexity of the issues and the uncertainty tied to the partial knowledge of the systems under study. Two case studies with specific application to performances measurement (environmental performances in the case of the K8 approach and sustainable development performances in the case of the EU Sustainable Development Strategy) and a case study about the selection of sustainable development indicators amongst Municipalities in Scotland, are discussed in the first part of the work. In the second part of the work, the common denominator among subjects consists in the application of spatial indices and indicators to address operational problems in land use management within the territory of the Ravenna province (Italy). The main conclusion of the thesis is that a ‘perfect’ methodological approach which always produces the best results in assessing sustainability performances does not exist. Rather, there is a pool of correct approaches answering different evaluation questions, to be used when methodologies fit the purpose of the analysis. For this reason, methodological limits and conceptual assumptions as well as consistency and transparency of the assessment, become the key factors for assessing the quality of the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il progetto di ricerca si situa nell’ambito dell’informatica giudiziaria settore che studia i sistemi informativi implementati negli uffici giudiziari allo scopo di migliorare l’efficienza del servizio, fornire una leva per la riduzione dei lunghi tempi processuali, al fine ultimo di garantire al meglio i diritti riconosciuti ai cittadini e accrescere la competitività del Paese. Oggetto di studio specifico del progetto di ricerca è l’utilizzo delle ICT nel processo penale. Si tratta di una realtà meno studiata rispetto al processo civile, eppure la crisi di efficienza del processo non è meno sentita in tale area: l’arretrato da smaltire al 30 giugno del 2011 è stato quantificato in 3,4 milioni di processi penali, e il tempo medio di definizione degli stessi è di quattro anni e nove mesi. Guardare al processo penale con gli occhi della progettazione dei sistemi informativi è vedere un fluire ininterrotto di informazioni che include realtà collocate a monte e a valle del processo stesso: dalla trasmissione della notizia di reato alla esecuzione della pena. In questa prospettiva diventa evidente l’importanza di una corretta gestione delle informazioni: la quantità, l’accuratezza, la rapidità di accesso alle stesse sono fattori così cruciali per il processo penale che l’efficienza del sistema informativo e la qualità della giustizia erogata sono fortemente interrelate. Il progetto di ricerca è orientato a individuare quali siano le condizioni in cui l’efficienza può essere effettivamente raggiunta e, soprattutto, a verificare quali siano le scelte tecnologiche che possono preservare, o anche potenziare, i principi e le garanzie del processo penale. Nel processo penale, infatti, sono coinvolti diritti fondamentali dell’individuo quali la libertà personale, la dignità, la riservatezza, diritti fondamentali che vengono tutelati attraverso un ampia gamma di diritti processuali quali la presunzione di innocenza, il diritto di difesa, il diritto al contraddittorio, la finalità di rieducazione della pena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil is a critically important component of the earth’s biosphere. Developing agricultural production systems able to conserve soil quality is essential to guarantee the current and future capacity of soil to provide goods and services. This study investigates the potential of microbial and biochemical parameters to be used as early and sensitive soil quality indicators. Their ability to differentiate plots under contrasting fertilization regimes is evaluated based also on their sensitivity to seasonal fluctuations of environmental conditions and on their relationship with soil chemical parameters. Further, the study addresses some of the critical methodological aspects of microplate-based fluorimetric enzyme assays, in order to optimize assay conditions and evaluate their suitability to be used as a toll to asses soil quality. The study was based on a long-term field experiment established in 1966 in the Po valley (Italy). The soil was cropped with maize (Z. mays L.) and winter wheat (T. aestivum L.) and received no organic fertilization, crop residue or manure, in combination with increasing levels of mineral N fertilizer. The soil microbiota responded to manure amendment increasing it biomass and activity and changing its community composition. Crop residue effect was much more limited. Mineral N fertilization stimulated crop residue mineralization, shifted microbial community composition and influenced N and P cycling enzyme activities. Seasonal fluctuations of environmental factors affected the soil microbiota. However microbial and biochemical parameters seasonality did not hamper the identification of fertilization-induced effects. Soil microbial community abundance, function and composition appeared to be strongly related to soil organic matter content and composition, confirming the close link existing between these soil quality indicators. Microplate-based fluorimetric enzyme assays showed potential to be used as fast and throughput toll to asses soil quality, but required proper optimization of the assay conditions for a precise estimation of enzymes maximum potential activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.