27 resultados para ICD,monitoraggio da remoto,cuore,aritmie cardiache.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
L'intervento di connessione cavo-polmonare totale (TCPC) nei pazienti portatori di cuore univentricolare, a causa della particolare condizione emodinamica, determina un risentimento a carico di numerosi parenchimi. Scopo della ricerca è di valutare l'entità di questo danno ad un follow-up medio-lungo. Sono stati arruolati 115 pazienti, sottoposti ad intervento presso i centri di Cardiochirurgia Pediatrica di Bologna (52 pz) e Torino (63 pz). Il follow-up medio è stato di 125±2 mesi. I pazienti sono stati sottoposti ad indagine emodinamica (88 pz), test cardiopolmonare (75 pz) e Fibroscan ed ecografia epatica (47 pz). La pressione polmonare media è stata di 11.5±2.6mmHg, ed in 12 pazienti i valori di pressione polmonare erano superiori a 15mmHg. La pressione atriale media era di 6.7±2.3mmHg ed il calcolo delle resistenze vascolari polmonari indicizzate (RVP) era in media di 2±0.99 UW/m2. In 29 pazienti le RVP erano superiori a 2 UW/m2. La VO2 max in media era pari a 28±31 ml/Kg/min, 58±15 % del valore teorico. La frequenza cardiaca massima all'apice dello sforzo era di 151±22 bpm, pari al 74±17% del valore teorico. Il Fibroscan ha fornito un valore medio di 17.01 kPa (8-34.3kPa). Cinque pazienti erano in classe F2, 9 pazienti in classe F3 e 33 pazienti risultavano in classe F4. Nei pazienti con follow-up maggiore di 10 anni il valore di stiffness epatica (19.6±5.2kPa) è risultato significativamente maggiore a quello dei pazienti con follow-up minore di 10 anni (15.1±5.8kPa, p<0.01). La frequenza cardiaca massima raggiunta durante lo sforzo del test cardiopolmonare è risultata significativamente correlata alla morfologia del ventricolo unico, risultando del 67.8±14.4% del valore teorico nei pazienti portatori di ventricolo destro contro il 79.6±8.7% dei portatori di ventricolo sinistro (p=0.006). L'intervento di TCPC determina un risentimento a carico di numerosi parenchimi proporzionale alla lunghezza del follow-up, e necessita pertanto un costante monitoraggio clinico-strumentale multidisciplinare.
Resumo:
Heart diseases are the leading cause of death worldwide, both for men and women. However, the ionic mechanisms underlying many cardiac arrhythmias and genetic disorders are not completely understood, thus leading to a limited efficacy of the current available therapies and leaving many open questions for cardiac electrophysiologists. On the other hand, experimental data availability is still a great issue in this field: most of the experiments are performed in vitro and/or using animal models (e.g. rabbit, dog and mouse), even when the final aim is to better understand the electrical behaviour of in vivo human heart either in physiological or pathological conditions. Computational modelling constitutes a primary tool in cardiac electrophysiology: in silico simulations, based on the available experimental data, may help to understand the electrical properties of the heart and the ionic mechanisms underlying a specific phenomenon. Once validated, mathematical models can be used for making predictions and testing hypotheses, thus suggesting potential therapeutic targets. This PhD thesis aims to apply computational cardiac modelling of human single cell action potential (AP) to three clinical scenarios, in order to gain new insights into the ionic mechanisms involved in the electrophysiological changes observed in vitro and/or in vivo. The first context is blood electrolyte variations, which may occur in patients due to different pathologies and/or therapies. In particular, we focused on extracellular Ca2+ and its effect on the AP duration (APD). The second context is haemodialysis (HD) therapy: in addition to blood electrolyte variations, patients undergo a lot of other different changes during HD, e.g. heart rate, cell volume, pH, and sympatho-vagal balance. The third context is human hypertrophic cardiomyopathy (HCM), a genetic disorder characterised by an increased arrhythmic risk, and still lacking a specific pharmacological treatment.
Resumo:
This PhD thesis presents the results, achieved at the Aerospace Engineering Department Laboratories of the University of Bologna, concerning the development of a small scale Rotary wing UAVs (RUAVs). In the first part of the work, a mission simulation environment for rotary wing UAVs was developed, as main outcome of the University of Bologna partnership in the CAPECON program (an EU funded research program aimed at studying the UAVs civil applications and economic effectiveness of the potential configuration solutions). The results achieved in cooperation with DLR (German Aerospace Centre) and with an helicopter industrial partners will be described. In the second part of the work, the set-up of a real small scale rotary wing platform was performed. The work was carried out following a series of subsequent logical steps from hardware selection and set-up to final autonomous flight tests. This thesis will focus mainly on the RUAV avionics package set-up, on the onboard software development and final experimental tests. The setup of the electronic package allowed recording of helicopter responses to pilot commands and provided deep insight into the small scale rotorcraft dynamics, facilitating the development of helicopter models and control systems in a Hardware In the Loop (HIL) simulator. A neested PI velocity controller1 was implemented on the onboard computer and autonomous flight tests were performed. Comparison between HIL simulation and experimental results showed good agreement.
Resumo:
Oxidative stress is considered to be of major relevance for a variety of pathological processes. Thus, it is valuable to identify compounds, which might act as antioxidants, i.e. compounds that antagonize the deleterious action of reactive oxygen species (ROS) on biomolecules. The mode of action of these compounds could be either to scavenge ROS directly or to trigger protective mechanisms inside the cell, thereby resulting in improved defense against ROS. Sulforaphane (SF) (1-isothiocyanato-(4R)-(methylsulfinyl)butane) is a naturally occurring cancer chemopreventive agent found as a precursor glucosinolate in Cruciferous vegetables like broccoli. Although SF is not a direct-acting antioxidant, there is substantial evidence that SF acts indirectly to increase the antioxidant capacity of animal cells and their abilities to cope with oxidative stress. Induction of phase 2 enzymes is one means by which SF enhances the cellular antioxidant capacity. Enzymes induced by SF include Glutathione S-transferases (GST) and NAD[P]H:quinone oxidoreductase (NQO1) which can function as protectors against oxidative stress. To protect themselves from oxidative stress, cells are equipped with reducing buffer systems including the GSH and thioredoxin (Trx) reductase. GSH is an important tripeptide thiol which in addition to being the substrate for GSTs maintains the cellular oxidation– reduction balance and protects cells against free radical species. Aim of the first part of this thesis was to investigate the ability of SF to induce the expression and the activity of different phase 2 and antioxidant enzymes (such as GST, GR, GPx, NQO1, TR, SOD, CAT) in an in vitro model of rat cardiomyocytes, and also to define if SF treatment supprts cells in counteracting oxidative stress induced by H2O2 It is well known that acute exhaustive exercise causes significant reactive oxygen species generation that results in oxidative stress, which can induce negative effects on health and well being. In fact, increased oxidative stress and biomarkers (e.g., protein carbonyls, MDA, and 8- hydroxyguanosine) as well as muscle damage biomarkers (e.g. plasmatic Creatine cinase and Lactate dehydrogenase) have been observed after supramaximal sprint exercises, exhaustive longdistance cycling or running as well as resistance-type exercises, both in trained and untrained humans. Markers of oxidative stress also increase in rodents following exhaustive exercise. Moreover, antioxidant enzyme activities and expressions of antioxidant enzymes are known to increase in response to exhaustive exercise in both animal and human tissues. Aim of this project was to evaluate the effect of SF supplementation in counteracting oxidative stress induced by physical activity through its ability to induce phase 2, and antioxidant enzymes in rat muscle. The results show that SF is a nutraceutical compound able to induce the activity of different phase 2 and antioxidant enzymes in both cardiac muscle and skeletal muscle. Thanks to its actions SF is becoming a promising molecule able to prevent cardiovascular damages induced by oxidative stress and muscle damages induced by acute exhaustive exercise.
Resumo:
Introduction: Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy and heart failure, thus representing a potential therapeutic target. Apoptosis of cardiac cells can be induced experimentally by several stimuli including hypoxia, serum withdrawal or combination of both. Several lines of research suggest that neurohormonal mechanisms play a central role in the progression of heart failure. In particular, excessive activation of the sympathetic nervous system or the renin-angiotensin-aldosterone system is known to have deleterious effects on the heart. Recent studies report that norepinephrine (NE), the primary transmitter of sympathetic nervous system, and aldosterone (ALD), which is actively produced in failing human heart, are able to induce apoptosis of rat cardiomyocytes. Polyamines are biogenic amines involved in many cellular processes, including apoptosis. Actually it appears that these molecules can act as promoting, modulating or protective agents in apoptosis depending on apoptotic stimulus and cellular model. We have studied the involvement of polyamines in the apoptosis of cardiac cells induced in a model of simulated ischemia and following treatment with NE or ALD. Methods: H9c2 cardiomyoblasts were exposed to a condition of simulated ischemia, consisting of hypoxia plus serum deprivation. Cardiomyocyte cultures were prepared from 1-3 day-old neonatal Wistar rat hearts. Polyamine depletion was obtained by culturing the cells in the presence of α-difluoromethylornithine (DFMO). Polyamines were separated and quantified in acidic cellular extracts by HPLC after derivatization with dansyl chloride. Caspase activity was measured by the cleavage of the fluorogenic peptide substrate. Ornithine decarboxylase (ODC) activity was measured by estimation of the release of 14C-CO2 from 14C-ornithine. DNA fragmentation was visualized by the method of terminal transferase-mediated dUTP nick end-labeling (TUNEL), and DNA laddering on agarose gel electophoresis. Cytochrome c was detected by immunoflorescent staining. Activation of signal transduction pathways was investigated by western blotting. Results: The results indicate that simulated ischemia, NE and ALD cause an early induction of the activity of ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, followed by a later increase of caspase activity, a family of proteases that execute the death program and induce cell death. This effect was prevented in the presence of DFMO, an irreversible inhibitor of ODC, thus suggesting that polyamines are involved in the execution of the death program activated by these stimuli. In H9c2 cells DFMO inhibits several molecular events related to apoptosis that follow simulated ischemia, such as the release of cytochrome c from mitochondria, down-regulation of Bcl-xL, and DNA fragmentation. The anti-apoptotic protein survivin is down-regulated after ALD or NE treatement and polyamine depletion obtained by DFMO partially opposes survivin decrease. Moreover, a study of key signal transduction pathways governing cell death and survival, revealed an involvement of AMP activated protein kinase (AMPK) and AKT kinase, in the modulation by polyamines of the response of cardiomyocytes to NE. In fact polyamine depleted cells show an altered pattern of AMPK and AKT activation that may contrast apoptosis and appears to result from a differential effect on the specific phosphatases that dephosphorylate and switch off these signaling proteins. Conclusions: These results indicate that polyamines are involved in the execution of the death program activated in cardiac cells by heart failure-related stimuli, like ischemia, ALD and NE, and suggest that their apoptosis facilitating action is mediated by a network of specific phosphatases and kinases.
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
Il lavoro di tesi è incentrato sulla valutazione del degrado del suolo dovuto a fenomeni di inquinamento da metalli pesanti aerodispersi, ovvero apportati al suolo mediante deposizioni atmosferiche secche ed umide, in ambiente urbano. Lo scopo della ricerca è legato principalmente alla valutazione dell’efficienza del metodo di monitoraggio ideato che affianca al campionamento e all’analisi pedologica l’utilizzo di bioindicatori indigeni, quali il muschio, il cotico erboso, le foglie di piante arboree e il materiale pulverulento depositatosi su di esse. Una semplice analisi pedologica infatti non permette di discriminare la natura dei contaminanti in esso ritrovati. I metalli pesanti possono raggiungere il suolo attraverso diverse vie. In primo luogo questi elementi in traccia si trovano naturalmente nei suoi; ma numerose sono le fonti antropiche: attività industriali, traffico veicolare, incenerimento dei rifiuti, impianti di riscaldamento domestico, pratiche agricole, utilizzo di acque con bassi requisiti di qualità, ecc. Questo fa capire come una semplice analisi del contenuto totale o pseudo - totale di metalli pesanti nel suolo non riesca a rispondere alla domanda su quale si la fonte di provenienza di queste sostanze. Il metodo di monitoraggio integrato suolo- pianta è stato applicato a due diversi casi di studio. Il primo denominato “Progetto per il monitoraggio e valutazione delle concentrazioni in metalli pesanti e micro elementi sul sistema suolo - pianta in aree urbane adibite a verde pubblico dell’Emilia – Romagna” ha permesso di valutare l’insorgenza di una diminuzione della qualità dell’ecosistema parco urbano causata dalla ricaduta di metalli pesanti aerotrasportati, in tre differenti realtà urbane dell’Emilia Romagna: le città di Bologna, Ferrara e Cesena. Le città presentano caratteristiche pedologiche, ambientali ed economico-sociali molto diverse tra loro. Questo ha permesso di studiare l’efficienza del metodo su campioni di suolo e di vegetali molto diversi per quanto riguarda le aliquote di metalli pesanti riscontrate. Il secondo caso di studio il “Monitoraggio relativo al contenuto in metalli pesanti e microelementi nel sistema acqua-suolo-pianta delle aree circostanti l’impianto di termovalorizzazione e di incenerimento del Frullo (Granarolo dell’Emilia - BO)” è stato invece incentrato sulla valutazione della qualità ambientale delle aree circostanti l’inceneritore. Qui lo scenario si presentava più omogeneo dal punto di vista pedologico rispetto al caso di studio precedente, ma molto più complesso l’ecosistema di riferimento (urbano, extra-urbano ed agricolo). Seppure il metodo suolo-pianta abbia permesso di valutare gli apporti di metalli pesanti introdotti per via atmosferica, non è stato possibile imputarne l’origine alle sole emissioni prodotte dall’inceneritore.