15 resultados para Hypersausage neuron

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Postnatal neurogenesis in the hippocampal dentate gyrus, can be modulated by numerous determinants, such as hormones, transmitters and stress. Among the factors positively interfering with neurogenesis, the complexity of the environment appears to play a particularly striking role. Adult mice reared in an enriched environment produce more neurons and exhibit better performance in hippocampus-specific learning tasks. While the effects of complex environments on hippocampal neurogenesis are well documented, there is a lack of information on the effects of living under socio-sensory deprivation conditions. Due to the immaturity of rats and mice at birth, studies dealing with the effects of environmental enrichment on hippocampal neurogenesis were carried out in adult animals, i.e. during a period of relatively low rate of neurogenesis. The impact of environment is likely to be more dramatic during the first postnatal weeks, because at this time granule cell production is remarkably higher than at later phases of development. The aim of the present research was to clarify whether and to what extent isolated or enriched rearing conditions affect hippocampal neurogenesis during the early postnatal period, a time window characterized by a high rate of precursor proliferation and to elucidate the mechanisms underlying these effects. The experimental model chosen for this research was the guinea pig, a precocious rodent, which, at 4-5 days of age can be independent from maternal care. Experimental design. Animals were assigned to a standard (control), an isolated, or an enriched environment a few days after birth (P5-P6). On P14-P17 animals received one daily bromodeoxyuridine (BrdU) injection, to label dividing cells, and were sacrificed either on P18, to evaluate cell proliferation or on P45, to evaluate cell survival and differentiation. Methods. Brain sections were processed for BrdU immunhistochemistry, to quantify the new born and surviving cells. The phenotype of the surviving cells was examined by means of confocal microscopy and immunofluorescent double-labeling for BrdU and either a marker of neurons (NeuN) or a marker of astrocytes (GFAP). Apoptotic cell death was examined with the TUNEL method. Serial sections were processed for immunohistochemistry for i) vimentin, a marker of radial glial cells, ii) BDNF (brain-derived neurotrofic factor), a neurotrophin involved in neuron proliferation/survival, iii) PSA-NCAM (the polysialylated form of the neural cell adhesion molecule), a molecule associated with neuronal migration. Total granule cell number in the dentate gyrus was evaluated by stereological methods, in Nissl-stained sections. Results. Effects of isolation. In P18 isolated animals we found a reduced cell proliferation (-35%) compared to controls and a lower expression of BDNF. Though in absolute terms P45 isolated animals had less surviving cells than controls, they showed no differences in survival rate and phenotype percent distribution compared to controls. Evaluation of the absolute number of surviving cells of each phenotype showed that isolated animals had a reduced number of cells with neuronal phenotype than controls. Looking at the location of the new neurons, we found that while in control animals 76% of them had migrated to the granule cell layer, in isolated animals only 55% of the new neurons had reached this layer. Examination of radial glia cells of P18 and P45 animals by vimentin immunohistochemistry showed that in isolated animals radial glia cells were reduced in density and had less and shorter processes. Granule cell count revealed that isolated animals had less granule cells than controls (-32% at P18 and -42% at P45). Effects of enrichment. In P18 enriched animals there was an increase in cell proliferation (+26%) compared to controls and a higher expression of BDNF. Though in both groups there was a decline in the number of BrdU-positive cells by P45, enriched animals had more surviving cells (+63) and a higher survival rate than controls. No differences were found between control and enriched animals in phenotype percent distribution. Evaluation of the absolute number of cells of each phenotype showed that enriched animals had a larger number of cells of each phenotype than controls. Looking at the location of cells of each phenotype we found that enriched animals had more new neurons in the granule cell layer and more astrocytes and cells with undetermined phenotype in the hilus. Enriched animals had a higher expression of PSA-NCAM in the granule cell layer and hilus Vimentin immunohistochemistry showed that in enriched animals radial glia cells were more numerous and had more processes.. Granule cell count revealed that enriched animals had more granule cells than controls (+37% at P18 and +31% at P45). Discussion. Results show that isolation rearing reduces hippocampal cell proliferation but does not affect cell survival, while enriched rearing increases both cell proliferation and cell survival. Changes in the expression of BDNF are likely to contribute to he effects of environment on precursor cell proliferation. The reduction and increase in final number of granule neurons in isolated and enriched animals, respectively, are attributable to the effects of environment on cell proliferation and survival and not to changes in the differentiation program. As radial glia cells play a pivotal role in neuron guidance to the granule cell layer, the reduced number of radial glia cells in isolated animals and the increased number in enriched animals suggests that the size of radial glia population may change dynamically, in order to match changes in neuron production. The high PSA-NCAM expression in enriched animals may concur to favor the survival of the new neurons by facilitating their migration to the granule cell layer. Conclusions. By using a precocious rodent we could demonstrate that isolated/enriched rearing conditions, at a time window during which intense granule cell proliferation takes place, lead to a notable decrease/increase of total granule cell number. The time-course and magnitude of postnatal granule cell production in guinea pigs are more similar to the human and non-human primate condition than in rats and mice. Translation of current data to humans would imply that exposure of children to environments poor/rich of stimuli may have a notably large impact on dentate neurogenesis and, very likely, on hippocampus dependent memory functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: It is well known, since the pioneristic observation by Jenkins and Dallenbach (Am J Psychol 1924;35:605-12), that a period of sleep provides a specific advantage for the consolidation of newly acquired informations. Recent research about the possible enhancing effect of sleep on memory consolidation has focused on procedural memory (part of non-declarative memory system, according to Squire’s taxonomy), as it appears the memory sub-system for which the available data are more consistent. The acquisition of a procedural skill follows a typical time course, consisting in a substantial practice-dependent learning followed by a slow, off-line improvement. Sleep seems to play a critical role in promoting the process of slow learning, by consolidating memory traces and making them more stable and resistant to interferences. If sleep is critical for the consolidation of a procedural skill, then an alteration of the organization of sleep should result in a less effective consolidation, and therefore in a reduced memory performance. Such alteration can be experimentally induced, as in a deprivation protocol, or it can be naturally observed in some sleep disorders as, for example, in narcolepsy. In this research, a group of narcoleptic patients, and a group of matched healthy controls, were tested in two different procedural abilities, in order to better define the size and time course of sleep contribution to memory consolidation. Experimental Procedure: A Texture Discrimination Task (Karni & Sagi, Nature 1993;365:250-2) and a Finger Tapping Task (Walker et al., Neuron 2002;35:205-11) were administered to two indipendent samples of drug-naive patients with first-diagnosed narcolepsy with cataplexy (International Classification of Sleep Disorder 2nd ed., 2005), and two samples of matched healthy controls. In the Texture Discrimination task, subjects (n=22) had to learn to recognize a complex visual array on the screen of a personal computer, while in the Finger Tapping task (n=14) they had to press a numeric sequence on a standard keyboard, as quickly and accurately as possible. Three subsequent experimental sessions were scheduled for each partecipant, namely a training session, a first retrieval session the next day, and a second retrieval session one week later. To test for possible circadian effects on learning, half of the subjects performed the training session at 11 a.m. and half at 17 p.m. Performance at training session was taken as a measure of the practice-dependent learning, while performance of subsequent sessions were taken as a measure of the consolidation level achieved respectively after one and seven nights of sleep. Between training and first retrieval session, all participants spent a night in a sleep laboratory and underwent a polygraphic recording. Results and Discussion: In both experimental tasks, while healthy controls improved their performance after one night of undisturbed sleep, narcoleptic patients showed a non statistically significant learning. Despite this, at the second retrieval session either healthy controls and narcoleptics improved their skills. Narcoleptics improved relatively more than controls between first and second retrieval session in the texture discrimination ability, while their performance remained largely lower in the motor (FTT) ability. Sleep parameters showed a grater fragmentation in the sleep of the pathological group, and a different distribution of Stage 1 and 2 NREM sleep in the two groups, being thus consistent with the hypothesis of a lower consolidation power of sleep in narcoleptic patients. Moreover, REM density of the first part of the night of healthy subjects showed a significant correlation with the amount of improvement achieved at the first retrieval session in TDT task, supporting the hypothesis that REM sleep plays an important role in the consolidation of visuo-perceptual skills. Taken together, these results speak in favor of a slower, rather than lower consolidation of procedural skills in narcoleptic patients. Finally, an explanation of the results, based on the possible role of sleep in contrasting the interference provided by task repetition is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this thesis is strongly interdisciplinary: it involves and presumes a knowledge on Neurophysiology, to understand the mechanisms that undergo the studied phenomena, a knowledge and experience on Electronics, necessary during the hardware experimental set-up to acquire neuronal data, on Informatics and programming to write the code necessary to control the behaviours of the subjects during experiments and the visual presentation of stimuli. At last, neuronal and statistical models should be well known to help in interpreting data. The project started with an accurate bibliographic research: until now the mechanism of perception of heading (or direction of motion) are still poorly known. The main interest is to understand how the integration of visual information relative to our motion with eye position information happens. To investigate the cortical response to visual stimuli in motion and the integration with eye position, we decided to study an animal model, using Optic Flow expansion and contraction as visual stimuli. In the first chapter of the thesis, the basic aims of the research project are presented, together with the reasons why it’s interesting and important to study perception of motion. Moreover, this chapter describes the methods my research group thought to be more adequate to contribute to scientific community and underlines my personal contribute to the project. The second chapter presents an overview on useful knowledge to follow the main part of the thesis: it starts with a brief introduction on central nervous system, on cortical functions, then it presents more deeply associations areas, which are the main target of our study. Furthermore, it tries to explain why studies on animal models are necessary to understand mechanism at a cellular level, that could not be addressed on any other way. In the second part of the chapter, basics on electrophysiology and cellular communication are presented, together with traditional neuronal data analysis methods. The third chapter is intended to be a helpful resource for future works in the laboratory: it presents the hardware used for experimental sessions, how to control animal behaviour during the experiments by means of C routines and a software, and how to present visual stimuli on a screen. The forth chapter is the main core of the research project and the thesis. In the methods, experimental paradigms, visual stimuli and data analysis are presented. In the results, cellular response of area PEc to visual stimuli in motion combined with different eye positions are shown. In brief, this study led to the identification of different cellular behaviour in relation to focus of expansion (the direction of motion given by the optic flow pattern) and eye position. The originality and importance of the results are pointed out in the conclusions: this is the first study aimed to investigate perception of motion in this particular cortical area. In the last paragraph, a neuronal network model is presented: the aim is simulating cellular pre-saccadic and post-saccadic response of neuron in area PEc, during eye movement tasks. The same data presented in chapter four, are further analysed in chapter fifth. The analysis started from the observation of the neuronal responses during 1s time period in which the visual stimulation was the same. It was clear that cells activities showed oscillations in time, that had been neglected by the previous analysis based on mean firing frequency. Results distinguished two cellular behaviour by their response characteristics: some neurons showed oscillations that changed depending on eye and optic flow position, while others kept the same oscillations characteristics independent of the stimulus. The last chapter discusses the results of the research project, comments the originality and interdisciplinary of the study and proposes some future developments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we analyzed new neuroprotective therapeutical strategies in PD (Parkinson’s disease) and AD (Alzheimer’s disease). Current therapeutic strategies for treating PD and AD offer mainly transient symptomatic relief but it is still impossible to block the loss of neuron and then the progression of PD and AD. There is considerable consensus that the increased production and/or aggregation of α- synuclein (α-syn) and β-amyloid peptide (Aβ), plays a central role in the pathogenesis of PD, related synucleinopathies and AD. Therefore, we identified antiamyloidogenic compounds and we tested their effect as neuroprotective drug-like molecules against α-syn and β-amyloid cytotoxicity in PC12. Herein, we show that two nitro-catechol compounds (entacapone and tolcapone) and 5 cathecol-containing compounds (dopamine, pyrogallol, gallic acid, caffeic acid and quercetin) with antioxidant and anti-inflammatory properties, are potent inhibitors of α-syn and β-amyloid oligomerization and fibrillization. Subsequently, we show that the inhibition of α-syn and β-amyloid oligomerization and fibrillization is correlated with the neuroprotection of these compounds against the α-syn and β-amyloid-induced cytotoxicity in PC12. Finally, we focused on the study of the neuroprotective role of microglia and on the possibility that the neuroprotection properties of these cells could be use as therapeutical strategy in PD and AD. Here, we have used an in vitro model to demonstrate neuroprotection of a 48 h-microglial conditioned medium (MCM) towards cerebellar granule neurons (CGNs) challenged with the neurotoxin 6-hydroxydopamine (6-OHDA), which induces a Parkinson-like neurodegeneration, with Aβ42, which induces a Alzheimer-like neurodegeneration, and glutamate, involved in the major neurodegenerative diseases. We show that MCM nearly completely protects CGNs from 6-OHDA neurotoxicity, partially from glutamate excitotoxicity but not from Aβ42 toxin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Microembolization during the carotid artery revascularization procedure may cause cerebral lesions. Elevated C-Reactive Protein (hsCRP), Vascular endothelial growth factor (VEGF) and serum amyloid A protein (SAA) exert inflammatory activities thus promoting carotid plaque instability. Neuron specific enolase (NSE) is considered a marker of cerebral injury. Neoangiogenesis represents a crucial step in atherosclerosis, since neovessels density correlates with plaque destabilization. However their clinical significance on the outcome of revascularization is unknown. This study aims to establish the correlation between palque vulnerabilty, embolization and histological or serological markers of inflammation and neoangiogenesis. Methods. Serum hsCRP, SAA, VEGF, NSE mRNA, PAPP-A mRNA levels were evaluated in patients with symptomatic carotid stenosis who underwent filter-protected CAS or CEA procedure. Cerebral embolization, presence of neurologicals symptoms, plaque neovascularization were evaluated testing imaging, serological and histological methods. Results were compared by Fisher’s, Student T test and Mann-Whitney U test. Results. Patients with hsCRP<5 mg/l, SAA<10mg/L and VEGF<500pg/ml had a mean PO of 21.5% versus 35.3% (p<0.05). In either group, embolic material captured by the filter was identified as atherosclerotic plaque fragments. Cerebral lesions increased significantly in all patients with hsCRP>5mg/l and SAA>10mg/l (16.5 vs 2.8 mean number, 3564.6 vs 417.6 mm3 mean volume). Discussion. High hsCRP, SAA and VEGF levels are associated with significantly greater embolization during CAS and to the vulnerabiliy of the plaque. This data suggest CAS might not be indicated as a method of revascularization in this specific group of patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rett's Syndrome (RTT) is a severe neurodevelopmental disorder, characterized by cognitive disability that appears in the first months/years of life. Recently, mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been detected in RTT patients characterized by early-onset seizures. CDKL5 is highly expressed in the brain starting from early postnatal stages to adulthood, suggesting the importance of this kinase for proper brain maturation and function. However, the role/s of CDKL5 in brain development and the molecular mechanisms whereby CDKL5 exerts its effects are still largely unknown. In order to characterize the role of CDKL5 on brain development, we created a mice carrying a targeted conditional knockout allele of Cdkl5. A first behavioral characterization shows that Cdkl5 knockout mice recapitulate several features that mimic the clinical features described in CDKL5 patients and are a useful tool to investigate phenotypic and functional aspects of Cdkl5 loss. We used the Cdkl5 knockout mouse model to dissect the role of CDKL5 on hippocampal development and to establish the mechanism/s underlying its actions. We found that Cdkl5 knockout mice showed increased precursor cell proliferation in the hippocampal dentate gyrus. Interestingly, this region was also characterized by an increased rate of apoptotic cell death that caused a reduction in the final neuron number in spite of the proliferation increase. Moreover, loss of Cdkl5 led to decreased dendritic development of new generated granule cells. Finally, we identified the Akt/GSK3-beta signaling as a target of Cdkl5 in the regulation of neuronal precursor proliferation, survival and maturation. Overall our findings highlight a critical role of CDKL5/AKT/GSK3-beta signaling in the control of neuron proliferation, survival and differentiation and suggest that CDKL5-related alterations of these processes during brain development underlie the neurological symptoms of the CDKL5 variant of RTT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last few decades, scientific evidence has pointed out the health-beneficial effects of phenolic compounds in foods, including a decrease in risk of developing degenerative and chronic diseases, known to be caused by oxidative stress. In this frame can be inserted research carried out during my PhD thesis, which concerns the phytochemical investigation of phenolic composition in sweet cherries (Prunus avium L.), apple fruits (Malus domestica L.) and quinoa seeds (Chenopodium quinoa Willd.). The first project was focused on the investigation of phytochemical profile and nutraceutical value of fruits of new sweet cherry cultivars. Their phenolic profile and antioxidant activity were investigated and compared with those of commonly commercialized cultivars. Their nutraceutical value was evaluated in terms of antioxidant/neuroprotective capacity in neuron-like SH-SY5Y cells, in order to investigate their ability to counteract the oxidative stress and/or neurodegeneration process The second project was focused on phytochemical analysis of phenolic compounds in apples of ancient cultivars with the aim of selecting the most diverse cultivars, that will then be assayed for their anti-carcinogenic and anti-proliferative activities against the hepato-biliary and pancreatic tumours. The third project was focused on the analysis of polyphenolic pattern of seeds of two quinoa varieties grown at different latitudes. Analysis of phenolic profile and in vitro antioxidant activity of seed extracts both in their free and soluble-conjugated forms, showed that the accumulation of some classes of flavonoids is strictly regulated by environmental factors, even though the overall antioxidant capacity does not differ in quinoa Regalona grown in Chile and Italy. During the internship period carried out at the Department of Organic Chemistry at Universidad Autónoma de Madrid (UAM), it was achieved the isolation of two pentacyclic triterpenoids, from an endemic Peruvian plant, Jatropha macrantha Müll. Arg., with bio-guided fractionation technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuroblastoma (NB) is the deadliest cancer in early childhood. Around 25% of patients pre- sent MYCN-amplification (MNA) which is linked to poor prognosis, metastasis, and therapy- resistance. While retinoic acid (RA) is beneficial only for some NB patients, the cause of its resistance is still unknown. Thus, there remains a need for new therapies to treat NB. I show that MYCN-specific inhibition by the antigene oligonucleotide BGA002 in combination with 13-cis RA (BGA002-RA) overcome resistance in MNA-NB cell lines, leading to potent MYCN mRNA expression and protein decrease. Moreover, BGA002-RA reactivated neuron differentiation or led to apoptosis in MNA-NB cell lines, and inhibited invasiveness capacity. Since NB and PI3K/mTOR pathway are strictly related MYCN down-regulation by BGA002 led to mTOR pathway inhibition in MNA-NB, that was strengthened by BGA002-RA. I further analyzed if MYCN silencing may induce autophagy reactivation, and indeed BGA002-RA caused a massive increase in lysosomes and macrovacuoles in MNA-NB cells. In addition, while MYCN is known to induce angiogenesis, BGA002-RA in vivo treatment elim- inated the tumor vascularization in a MNA-NB mice model, and significantly increased the survival. Overall, these results indicate that MYCN modulation mediates the therapeutic efficacy of RA and the development of RA resistance in MNA-NB. Furthermore, by targeting MYCN, we show a cancer-specific way of mTOR pathway inhibition only in MNA-NB, avoiding side effects of targeting mTOR in normal cells. These findings warrant clinical testing of BGA002-RA as a potential strategy to overcome RA resistance in MNA-NB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurodegenerative diseases (NDs) are characterized by a multifactorial etiology, in which oxidative stress and inflammation are the main causative factors. For this reason, increasing attention is being paid to the characterization and the identification of nutraceuticals and phytochemicals with intrinsic pleiotropic activity. Moreover, in a Circular Economy perspective, these natural compounds can be obtained also from renewable resources derived from the food industry by-products and can be used for both preventive and therapeutic purposes. The aim of this PhD program was to identify nutraceuticals and phytochemicals, both as extracts and pure compounds, and obtained from both plant and renewable sources, which due to their antioxidant and anti-inflammatory properties, were able to counteract cellular and molecular alterations that characterize NDs. Their neuroprotective potential has been evaluated in an in vitro model of neuroinflammation (the LPS-activated BV-2 microglial cell line), and/or in an in vitro model of neuronal oxidative stress (the neuron-like SH-SY5Y cell line differentiated with retinoic acid and exposed to H2O2). Four different projects, although deeply linked by the aforementioned common goal, have been discussed in this thesis: 1_ Impact of phenolic profile of different cherry cultivars on the potential neuroprotective effect in SH-SY5Y cells. 2_Anti-inflammatory activities of Spilanthol-rich essential oil from Acmella oleracea (L.). 3_Study of the anti-inflammatory activity of novel tacrine derivatives with lipids extracted from cashew nutshell liquid. 4_Coffee Silverskin (CSS) and Spent Coffee Grounds (SCG): coffee industry by-products as a promising source of neuroprotective agents. In general, it is, therefore, possible to conclude that the natural compounds studied in this thesis have been proven, due to their antioxidant and/or anti-inflammatory properties, to be valid preventive and therapeutic strategies for the treatment of NDs, to improve the life quality of these patients and of the general population by preventing and combating the onset of these deleterious diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Machine learning is widely adopted to decode multi-variate neural time series, including electroencephalographic (EEG) and single-cell recordings. Recent solutions based on deep learning (DL) outperformed traditional decoders by automatically extracting relevant discriminative features from raw or minimally pre-processed signals. Convolutional Neural Networks (CNNs) have been successfully applied to EEG and are the most common DL-based EEG decoders in the state-of-the-art (SOA). However, the current research is affected by some limitations. SOA CNNs for EEG decoding usually exploit deep and heavy structures with the risk of overfitting small datasets, and architectures are often defined empirically. Furthermore, CNNs are mainly validated by designing within-subject decoders. Crucially, the automatically learned features mainly remain unexplored; conversely, interpreting these features may be of great value to use decoders also as analysis tools, highlighting neural signatures underlying the different decoded brain or behavioral states in a data-driven way. Lastly, SOA DL-based algorithms used to decode single-cell recordings rely on more complex, slower to train and less interpretable networks than CNNs, and the use of CNNs with these signals has not been investigated. This PhD research addresses the previous limitations, with reference to P300 and motor decoding from EEG, and motor decoding from single-neuron activity. CNNs were designed light, compact, and interpretable. Moreover, multiple training strategies were adopted, including transfer learning, which could reduce training times promoting the application of CNNs in practice. Furthermore, CNN-based EEG analyses were proposed to study neural features in the spatial, temporal and frequency domains, and proved to better highlight and enhance relevant neural features related to P300 and motor states than canonical EEG analyses. Remarkably, these analyses could be used, in perspective, to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, CNNs were developed to decode single-neuron activity, providing a better compromise between performance and model complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The superior parietal lobule (SPL) of macaques is classically described as an associative cortex implicated in visuospatial perception, planning and control of reaching and grasping movements (De Vitis et al., 2019; Galletti et al., 2003, 2018, 2022; Fattori et al., 2017; Hadjidimitrakis et al., 2015). These processes are the result of the integration of signals related to different sensory modalities. During a goal-directed action, eye and limb information are combined to ensure that the hand is transported at the gazed target location and the arm is maintained steady in the final position. The SPL areas V6A, PEc and PE contain cells sensitive to the direction of gaze and limb position but less is known about the degree of independent encoding of these signals. In this thesis, we evaluated the influence of eye and arm position information upon single neuron activity of areas V6A, PEc and PE during the holding period after the execution of arm reaching movement, when the gaze and hand are both still at the reach target. Two male macaques (Macaca fascicularis) performed a reaching task while single unit activity was recorded from areas V6A, PEc and PE. We found that neurons in all these areas were modulated by eye and static arm positions with a joint encoding of gaze and somatosensory signals in V6A and PEc and a mostly separate processing of the two signals in PE. The elaboration of this information reflects the functional gradient found in the SPL with the caudal sector characterized by visuo-somatic properties in comparison to the rostral sector dominated by somatosensory signals. This evidence well agree also with the recent reallocation of areas V6A and PEc in Brodmann’s area 7 depending on their similar structural and functional features with respect to PE belonging to Brodmann’s area 5 (Gamberini et al., 2020).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fabry disease (FD), X-linked metabolic disorder caused by a deficiency in α-galactosidase A activity, leads to the accumulation of glycosphingolipids, mainly Gb3 and lyso-Gb3, in several organs. Gastrointestinal (GI) symptoms are among the earliest and most common, strongly impacting patients’ quality of life. However, the origin of these symptoms and the exact mechanisms of pathogenesis are still poorly understood, thus the pressing need to improve their knowledge. Here we aimed to evaluate whether a FD murine model (α-galactosidase A Knock-Out) captures the functional GI issues experienced by patients. In particular, the potential mechanisms involved in the development and maintenance of GI symptoms were explored by looking at the microbiota-gut-brain axis involvement. Moreover, we sought to examine the effects of lyso-Gb3 on colonic contractility and the intestinal epithelium and the enteric nervous system, which together play important roles in regulating intestinal ion transport and fluid and electrolyte homeostasis. Fabry mice revealed visceral hypersensitivity and a diarrhea-like phenotype accompanied by anxious-like behavior and reduced locomotor activity. They reported also an imbalance of SCFAs and an early compositional and functional dysbiosis of the gut microbiota, which partly persisted with advancing age. Moreover, overexpression of TRPV1 was found in affected mice, and partial alteration of TRPV4 and TRPA1 as well, identifying them as possible therapeutic targets. The Ussing chamber results after treatment with lyso-Gb3 showed an increase in Isc (likely mediated by HCO3- ions movement) which affects neuron-mediated secretion, especially capsaicin- and partly veratridine-mediated. This first characterization of gut-brain axis dysfunction in FD mouse provides functional validation of the model, suggesting new targets and possible therapeutic approaches. Furthermore, lyso-Gb3 is confirmed to be not only a marker for the diagnosis and follow-up of FD but also a possible player in the alteration of the FD colonic ion transport process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD), a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. To date, little is known about the etiology of CDD and no therapies are available. When overactivated in response to neuronal damage and genetic or environmental factors, microglia – the brain macrophages – cause damage to neighboring neurons by producing neurotoxic factors and pro-inflammatory molecules. Importantly, overactivated microglia have been described in several neurodegenerative and neurodevelopmental disorders, suggesting that active neuroinflammation may account for the compromised neuronal survival and/or brain development observed in these pathologies. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether it plays a causative or exacerbating role in the pathophysiology of CDD. Here, we show evidence of a chronic microglia overactivation status in the brain of Cdkl5 KO mice, characterized by alterations in microglial cell number/morphology and increased pro-inflammatory gene expression. We found that the neuroinflammatory process is already present in the postnatal period in Cdkl5 KO mice and worsens during aging. Remarkably, by restoring microglia alterations, treatment with luteolin, a natural anti-inflammatory flavonoid, promotes neuronal survival in the brain of Cdkl5 KO mice since it counteracts hippocampal neuron cell death and protects neurons from NMDA-induced excitotoxic damage. In addition, through the restoration of microglia alterations, luteolin treatment also increases hippocampal neurogenesis and restores dendritic spine maturation and dendritic arborization of hippocampal and cortical pyramidal neurons in Cdkl5 KO mice, leading to improved behavioral performance. These findings highlight new insights into the CDD pathophysiology and provide the first evidence that therapeutic approaches aimed at counteracting neuroinflammation could be beneficial in CDD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance technique that can quantify in vivo biomarkers of pathology, such as alteration in iron and myelin concentration. It allows for the comparison of magnetic susceptibility properties within and between different subject groups. In this thesis, QSM acquisition and processing pipeline are discussed, together with clinical and methodological applications of QSM to neurodegeneration. In designing the studies, significant emphasis was placed on results reproducibility and interpretability. The first project focuses on the investigation of cortical regions in amyotrophic lateral sclerosis. By examining various histogram susceptibility properties, a pattern of increased iron content was revealed in patients with amyotrophic lateral sclerosis compared to controls and other neurodegenerative disorders. Moreover, there was a correlation between susceptibility and upper motor neuron impairment, particularly in patients experiencing rapid disease progression. Similarly, in the second application, QSM was used to examine cortical and sub-cortical areas in individuals with myotonic dystrophy type 1. The thalamus and brainstem were identified as structures of interest, with relevant correlations with clinical and laboratory data such as neurological evaluation and sleep records. In the third project, a robust pipeline for assessing radiomic susceptibility-based features reliability was implemented within a cohort of patients with multiple sclerosis and healthy controls. Lastly, a deep learning super-resolution model was applied to QSM images of healthy controls. The employed model demonstrated excellent generalization abilities and outperformed traditional up-sampling methods, without requiring a customized re-training. Across the three disorders investigated, it was evident that QSM is capable of distinguishing between patient groups and healthy controls while establishing correlations between imaging measurements and clinical data. These studies lay the foundation for future research, with the ultimate goal of achieving earlier and less invasive diagnoses of neurodegenerative disorders within the context of personalized medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.