7 resultados para Hype Cycle Model
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
I applied the SBAS-DInSAR method to the Mattinata Fault (MF) (Southern Italy) and to the Doruneh Fault System (DFS) (Central Iran). In the first case, I observed limited internal deformation and determined the right lateral kinematic pattern with a compressional pattern in the northern sector of the fault. Using the Okada model I inverted the observed velocities defining a right lateral strike slip solution for the MF. Even if it fits the data within the uncertainties, the modeled slip rate of 13-15 mm yr-1 seems too high with respect to the geological record. Concerning the Western termination of DFS, SAR data confirms the main left lateral transcurrent kinematics of this fault segment, but reveal a compressional component. My analytical model fits successfully the observed data and quantifies the slip in ~4 mm yr-1 and ~2.5 mm yr-1 of pure horizontal and vertical displacement respectively. The horizontal velocity is compatible with geological record. I applied classic SAR interferometry to the October–December 2008 Balochistan (Central Pakistan) seismic swarm; I discerned the different contributions of the three Mw > 5.7 earthquakes determining fault positions, lengths, widths, depths and slip distributions, constraining the other source parameters using different Global CMT solutions. A well constrained solution has been obtained for the 09/12/2008 aftershock, whereas I tested two possible fault solutions for the 28-29/10/08 mainshocks. It is not possible to favor one of the solutions without independent constraints derived from geological data. Finally I approached the study of the earthquake-cycle in transcurrent tectonic domains using analog modeling, with alimentary gelatins like crust analog material. I successfully joined the study of finite deformation with the earthquake cycle study and sudden dislocation. A lot of seismic cycles were reproduced in which a characteristic earthquake is recognizable in terms of displacement, coseismic velocity and recurrence time.
Resumo:
Life Cycle Assessment (LCA) is a chain-oriented tool to evaluate the environment performance of products focussing on the entire life cycle of these products: from the extraction of resources, via manufacturing and use, to the final processing of the disposed products. Through all these stages consumption of resources and pollutant releases to air, water, soil are identified and quantified in Life Cycle Inventory (LCI) analysis. Subsequently to the LCI phase follows the Life Cycle Impact Assessment (LCIA) phase; that has the purpose to convert resource consumptions and pollutant releases in environmental impacts. The LCIA aims to model and to evaluate environmental issues, called impact categories. Several reports emphasises the importance of LCA in the field of ENMs. The ENMs offer enormous potential for the development of new products and application. There are however unanswered questions about the impacts of ENMs on human health and the environment. In the last decade the increasing production, use and consumption of nanoproducts, with a consequent release into the environment, has accentuated the obligation to ensure that potential risks are adequately understood to protect both human health and environment. Due to its holistic and comprehensive assessment, LCA is an essential tool evaluate, understand and manage the environmental and health effects of nanotechnology. The evaluation of health and environmental impacts of nanotechnologies, throughout the whole of their life-cycle by using LCA methodology. This is due to the lack of knowledge in relation to risk assessment. In fact, to date, the knowledge on human and environmental exposure to nanomaterials, such ENPs is limited. This bottleneck is reflected into LCA where characterisation models and consequently characterisation factors for ENPs are missed. The PhD project aims to assess limitations and challenges of the freshwater aquatic ecotoxicity potential evaluation in LCIA phase for ENPs and in particular nanoparticles as n-TiO2.
Resumo:
In cycling cells positive stimuli like nutrient, growth factors and mitogens increase ribosome biogenesis rate and protein synthesis to ensure both growth and proliferation. In contrast, under stress situation, proliferating cells negatively modulate ribosome production to reduce protein synthesis and block cell cycle progression. The main strategy used by cycling cell to coordinate cell proliferation and ribosome biogenesis is to share regulatory elements, which participate directly in ribosome production and in cell cycle regulation. In fact, there is evidence that stimulation or inhibition of cell proliferation exerts direct effect on activity of the RNA polymerases controlling the ribosome biogenesis, while several alterations in normal ribosome biogenesis cause changes of the expression and the activity of the tumor suppressor p53, the main effector of cell cycle progression inhibition. The available data on the cross-talk between ribosome biogenesis and cell proliferation have been until now obtained in experimental model in which changes in ribosome biogenesis were obtained either by reducing the activity of the RNA polymerase I or by down-regulating the expression of the ribosomal proteins. The molecular pathways involved in the relationship between the effect of the inhibition of RNA polymerase III (Pol III) activity and cell cycle progression have been not yet investigated. In eukaryotes, RNA Polymerase III is responsible for transcription of factors involved both in ribosome assembly (5S rRNA) and rRNA processing (RNAse P and MRP).Thus, the aim of this study is characterize the effects of the down-regulation of RNA Polymerase III activity, or the specific depletion of 5S rRNA. The results that will be obtained might lead to a deeper understanding of the molecular pathway that controls the coordination between ribosome biogenesis and cell cycle, and might give useful information about the possibility to target RNA Polymerase III for cancer treatment.
A farm-level programming model to compare the atmospheric impact of conventional and organic farming
Resumo:
A model is developed to represent the activity of a farm using the method of linear programming. Two are the main components of the model, the balance of soil fertility and the livestock nutrition. According to the first, the farm is supposed to have a total requirement of nitrogen, which is to be accomplished either through internal sources (manure) or through external sources (fertilisers). The second component describes the animal husbandry as having a nutritional requirement which must be satisfied through the internal production of arable crops or the acquisition of feed from the market. The farmer is supposed to maximise total net income from the agricultural and the zoo-technical activities by choosing one rotation among those available for climate and acclivity. The perspective of the analysis is one of a short period: the structure of the farm is supposed to be fixed without possibility to change the allocation of permanent crops and the amount of animal husbandry. The model is integrated with an environmental module that describes the role of the farm within the carbon-nitrogen cycle. On the one hand the farm allows storing carbon through the photosynthesis of the plants and the accumulation of carbon in the soil; on the other some activities of the farm emit greenhouse gases into the atmosphere. The model is tested for some representative farms of the Emilia-Romagna region, showing to be capable to give different results for conventional and organic farming and providing first results concerning the different atmospheric impact. Relevant data about the representative farms and the feasible rotations are extracted from the FADN database, with an integration of the coefficients from the literature.
Resumo:
This thesis aims to present the ORC technology, its advantages and related problems. In particular, it provides an analysis of ORC waste heat recovery system in different and innovative scenarios, focusing on cases from the biggest to the lowest scale. Both industrial and residential ORC applications are considered. In both applications, the installation of a subcritical and recuperated ORC system is examined. Moreover, heat recovery is considered in absence of an intermediate heat transfer circuit. This solution allow to improve the recovery efficiency, but requiring safety precautions. Possible integrations of ORC systems with renewable sources are also presented and investigated to improve the non-programmable source exploitation. In particular, the offshore oil and gas sector has been selected as a promising industrial large-scale ORC application. From the design of ORC systems coupled with Gas Turbines (GTs) as topper systems, the dynamic behavior of the GT+ORC innovative combined cycles has been analyzed by developing a dynamic model of all the considered components. The dynamic behavior is caused by integration with a wind farm. The electric and thermal aspects have been examined to identify the advantages related to the waste heat recovery system installation. Moreover, an experimental test rig has been realized to test the performance of a micro-scale ORC prototype. The prototype recovers heat from a low temperature water stream, available for instance in industrial or residential waste heat. In the test bench, various sensors have been installed, an acquisitions system developed in Labview environment to completely analyze the ORC behavior. Data collected in real time and corresponding to the system dynamic behavior have been used to evaluate the system performance based on selected indexes. Moreover, various operational steady-state conditions are identified and operation maps are realized for a completely characterization of the system and to detect the optimal operating conditions.
Resumo:
During the PhD program in chemistry at the University of Bologna, the environmental sustainability of some industrial processes was studied through the application of the LCA methodology. The efforts were focused on the study of processes under development, in order to assess their environmental impacts to guide their transfer on an industrial scale. Processes that could meet the principles of Green Chemistry have been selected and their environmental benefits have been evaluated through a holistic approach. The use of renewable sources was assessed through the study of terephthalic acid production from biomass (which showed that only the use of waste can provide an environmental benefit) and a new process for biogas upgrading (whose potential is to act as a carbon capture technology). Furthermore, the basis for the development of a new methodology for the prediction of the environmental impact of ionic liquids has been laid. It has already shown good qualities in identifying impact trends, but further research on it is needed to obtain a more reliable and usable model. In the context of sustainable development that will not only be sector-specific, the environmental performance of some processes linked to the primary production sector has also been evaluated. The impacts of some organic farming practices in the wine production were analysed, the use of the Cereal Unit parameter was proposed as a functional unit for the comparison of different crop rotations, and the carbon footprint of school canteen meals was calculated. The results of the analyses confirm that sustainability in the industrial production sector should be assessed from a life cycle perspective, in order to consider all the flows involved during the different phases. In particular, it is necessary that environmental assessments adopt a cradle-to-gate approach, to avoid shifting the environmental burden from one phase to another.
Resumo:
In the last decades, global food supply chains had to deal with the increasing awareness of the stakeholders and consumers about safety, quality, and sustainability. In order to address these new challenges for food supply chain systems, an integrated approach to design, control, and optimize product life cycle is required. Therefore, it is essential to introduce new models, methods, and decision-support platforms tailored to perishable products. This thesis aims to provide novel practice-ready decision-support models and methods to optimize the logistics of food items with an integrated and interdisciplinary approach. It proposes a comprehensive review of the main peculiarities of perishable products and the environmental stresses accelerating their quality decay. Then, it focuses on top-down strategies to optimize the supply chain system from the strategical to the operational decision level. Based on the criticality of the environmental conditions, the dissertation evaluates the main long-term logistics investment strategies to preserve products quality. Several models and methods are proposed to optimize the logistics decisions to enhance the sustainability of the supply chain system while guaranteeing adequate food preservation. The models and methods proposed in this dissertation promote a climate-driven approach integrating climate conditions and their consequences on the quality decay of products in innovative models supporting the logistics decisions. Given the uncertain nature of the environmental stresses affecting the product life cycle, an original stochastic model and solving method are proposed to support practitioners in controlling and optimizing the supply chain systems when facing uncertain scenarios. The application of the proposed decision-support methods to real case studies proved their effectiveness in increasing the sustainability of the perishable product life cycle. The dissertation also presents an industry application of a global food supply chain system, further demonstrating how the proposed models and tools can be integrated to provide significant savings and sustainability improvements.