17 resultados para Human-specific Adenoviruses

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac morphogenesis is a complex process governed by evolutionarily conserved transcription factors and signaling molecules. The Drosophila cardiac tube is linear, made of 52 pairs of cardiomyocytes (CMs), which express specific transcription factor genes that have human homologues implicated in Congenital Heart Diseases (CHDs) (NKX2-5, GATA4 and TBX5). The Drosophila cardiac tube is linear and composed of a rostral portion named aorta and a caudal one called heart, distinguished by morphological and functional differences controlled by Hox genes, key regulators of axial patterning. Overexpression and inactivation of the Hox gene abdominal-A (abd-A), which is expressed exclusively in the heart, revealed that abd-A controls heart identity. The aim of our work is to isolate the heart-specific cisregulatory sequences of abd-A direct target genes, the realizator genes granting heart identity. In each segment of the heart, four pairs of cardiomyocytes (CMs) express tinman (tin), homologous to NKX2-5, and acquire strong contractile and automatic rhythmic activities. By tyramide amplified FISH, we found that seven genes, encoding ion channels, pumps or transporters, are specifically expressed in the Tin-CMs of the heart. We initially used online available tools to identify their heart-specific cisregutatory modules by looking for Conserved Non-coding Sequences containing clusters of binding sites for various cardiac transcription factors, including Hox proteins. Based on these data we generated several reporter gene constructs and transgenic embryos, but none of them showed reporter gene expression in the heart. In order to identify additional abd-A target genes, we performed microarray experiments comparing the transcriptomes of aorta versus heart and identified 144 genes overexpressed in the heart. In order to find the heart-specific cis-regulatory regions of these target genes we developed a new bioinformatic approach where prediction is based on pattern matching and ordered statistics. We first retrieved Conserved Noncoding Sequences from the alignment between the D.melanogaster and D.pseudobscura genomes. We scored for combinations of conserved occurrences of ABD-A, ABD-B, TIN, PNR, dMEF2, MADS box, T-box and E-box sites and we ranked these results based on two independent strategies. On one hand we ranked the putative cis-regulatory sequences according to best scored ABD-A biding sites, on the other hand we scored according to conservation of binding sites. We integrated and ranked again the two lists obtained independently to produce a final rank. We generated nGFP reporter construct flies for in vivo validation. We identified three 1kblong heart-specific enhancers. By in vivo and in vitro experiments we are determining whether they are direct abd-A targets, demonstrating the role of a Hox gene in the realization of heart identity. The identified abd-A direct target genes may be targets also of the NKX2-5, GATA4 and/or TBX5 homologues tin, pannier and Doc genes, respectively. The identification of sequences coregulated by a Hox protein and the homologues of transcription factors causing CHDs, will provide a mean to test whether these factors function as Hox cofactors granting cardiac specificity to Hox proteins, increasing our knowledge on the molecular mechanisms underlying CHDs. Finally, it may be investigated whether these Hox targets are involved in CHDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knee joint is a key structure of the human locomotor system. The knowledge of how each single anatomical structure of the knee contributes to determine the physiological function of the knee, is of fundamental importance for the development of new prostheses and novel clinical, surgical, and rehabilitative procedures. In this context, a modelling approach is necessary to estimate the biomechanic function of each anatomical structure during daily living activities. The main aim of this study was to obtain a subject-specific model of the knee joint of a selected healthy subject. In particular, 3D models of the cruciate ligaments and of the tibio-femoral articular contact were proposed and developed using accurate bony geometries and kinematics reliably recorded by means of nuclear magnetic resonance and 3D video-fluoroscopy from the selected subject. Regarding the model of the cruciate ligaments, each ligament was modelled with 25 linear-elastic elements paying particular attention to the anatomical twisting of the fibres. The devised model was as subject-specific as possible. The geometrical parameters were directly estimated from the experimental measurements, whereas the only mechanical parameter of the model, the elastic modulus, had to be considered from the literature because of the invasiveness of the needed measurements. Thus, the developed model was employed for simulations of stability tests and during living activities. Physiologically meaningful results were always obtained. Nevertheless, the lack of subject-specific mechanical characterization induced to design and partially develop a novel experimental method to characterize the mechanics of the human cruciate ligaments in living healthy subjects. Moreover, using the same subject-specific data, the tibio-femoral articular interaction was modelled investigating the location of the contact point during the execution of daily motor tasks and the contact area at the full extension with and without the whole body weight of the subject. Two different approaches were implemented and their efficiency was evaluated. Thus, pros and cons of each approach were discussed in order to suggest future improvements of this methodologies. The final results of this study will contribute to produce useful methodologies for the investigation of the in-vivo function and pathology of the knee joint during the execution of daily living activities. Thus, the developed methodologies will be useful tools for the development of new prostheses, tools and procedures both in research field and in diagnostic, surgical and rehabilitative fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The repressor element 1-silencing transcription factor (REST) was first identified as a protein that binds to a 21-bp DNA sequence element (known as repressor element 1 (RE1)) resulting in transcriptional repression of the neural-specific genes [Chong et al., 1995; Schoenherr and Anderson, 1995]. The original proposed role for REST was that of a factor responsible for restricting neuronal gene expression to the nervous system by silencing expression of these genes in non-neuronal cells. Although it was initially thought to repress neuronal genes in non-neuronal cells, the role of REST is complex and tissue dependent. In this study I investigated any role played by REST in the induction and patterning of differentiation of SH-SY5Y human neuroblastoma cells exposed to IGF-I. and phorbol 12- myristate 13-acetate (PMA) To down-regulate REST expression we developed an antisense (AS) strategy based on the use of phosphorothioate oligonucleotides (ODNs). In order to evaluate REST mRNA levels, we developed a real-time PCR technique and REST protein levels were evaluated by western blotting. Results showed that nuclear REST is increased in SH-SY5Y neuroblastoma cells cultured in SFM and exposed to IGF-I for 2-days and it then declines in 5-day-treated cells concomitant with a progressive neurite extension. Also the phorbol ester PMA was able to increase nuclear REST levels after 3-days treatment concomitant to neuronal differentiation of neuroblastoma cells, whereas, at later stages, it is down-regulated. Supporting these data, the exposure to PKC inhibitors (GF10923X and Gö6976) and PMA (16nM) reverted the effects observed with PMA alone. REST levels were related to morphological differentiation, expression of growth coneassociated protein 43 (GAP-43; a gene not regulated by REST) and of synapsin I and βIII tubulin (genes regulated by REST), proteins involved in the early stage of neuronal development. We observed that differentiation of SH-SY5Y cells by IGF-I and PMA was accompanied by a significant increase of these neuronal markers, an effect that was concomitant with REST decrease. In order to relate the decreased REST expression with a progressive neurite extension, I investigated any possible involvement of the ubiquitin–proteasome system (UPS), a multienzymatic pathway which degrades polyubiquinated soluble cytoplasmic proteins [Pickart and Cohen, 2004]. For this purpose, SH-SY5Y cells are concomitantly exposed to PMA and the proteasome inhibitor MG132. In SH-SY5Y exposed to PMA and MG 132, we observed an inverse pattern of expression of synapsin I and β- tubulin III, two neuronal differentiation markers regulated by REST. Their cytoplasmic levels are reduced when compared to cells exposed to PMA alone, as a consequence of the increase of REST expression by proteasome inhibitor. The majority of proteasome substrates identified to date are marked for degradation by polyubiquitinylation; however, exceptions to this principle, are well documented [Hoyt and Coffino, 2004]. Interestingly, REST degradation seems to be completely ubiquitin-independent. The expression pattern of REST could be consistent with the theory that, during early neuronal differentiation induced by IGF-I and PKC, it may help to repress the expression of several genes not yet required by the differentiation program and then it declines later. Interestingly, the observation that REST expression is progressively reduced in parallel with cell proliferation seems to indicate that the role of this transcription factor could also be related to cell survival or to counteract apotosis events [Lawinger et al., 2000] although, as shown by AS-ODN experiments, it does not seem to be directly involved in cell proliferation. Therefore, the decline of REST expression is a comparatively later event during maturation of neuroroblasts in vitro. Thus, we propose that REST is regulated by growth factors, like IGF-I, and PKC activators in a time-dependent manner: it is elevated during early steps of neural induction and could contribute to down-regulate genes not yet required by the differentiation program while it declines later for the acquisition of neural phenotypes, concomitantly with a progressive neurite extension. This later decline is regulated by the proteasome system activation in an ubiquitin-indipendent way and adds more evidences to the hypothesis that REST down-regulation contributes to differentiation and arrest of proliferation of neuroblastoma cells. Finally, the glycosylation pattern of the REST protein was analysed, moving from the observation that the molecular weight calculated on REST sequence is about 116 kDa but using western blotting this transcription factor appears to have distinct apparent molecular weight (see Table 1.1): this difference could be explained by post-translational modifications of the proteins, like glycosylation. In fact recently, several studies underlined the importance of O-glycosylation in modulating transcriptional silencing, protein phosphorylation, protein degradation by proteasome and protein–protein interactions [Julenius et al., 2005; Zachara and Hart, 2006]. Deglycosilating analysis showed that REST protein in SH-SY5Y and HEK293 cells is Oglycosylated and not N-glycosylated. Moreover, using several combination of deglycosilating enzymes it is possible to hypothesize the presence of Gal-β(1-3)-GalNAc residues on the endogenous REST, while β(1-4)-linked galactose residues may be present on recombinant REST protein expressed in HEK293 cells. However, the O-glycosylation process produces an immense multiplicity of chemical structures and monosaccharides must be sequentially hydrolyzed by a series of exoglycosidase. Further experiments are needed to characterize all the post-translational modification of the transcription factor REST.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the post genomic era with the massive production of biological data the understanding of factors affecting protein stability is one of the most important and challenging tasks for highlighting the role of mutations in relation to human maladies. The problem is at the basis of what is referred to as molecular medicine with the underlying idea that pathologies can be detailed at a molecular level. To this purpose scientific efforts focus on characterising mutations that hamper protein functions and by these affect biological processes at the basis of cell physiology. New techniques have been developed with the aim of detailing single nucleotide polymorphisms (SNPs) at large in all the human chromosomes and by this information in specific databases are exponentially increasing. Eventually mutations that can be found at the DNA level, when occurring in transcribed regions may then lead to mutated proteins and this can be a serious medical problem, largely affecting the phenotype. Bioinformatics tools are urgently needed to cope with the flood of genomic data stored in database and in order to analyse the role of SNPs at the protein level. In principle several experimental and theoretical observations are suggesting that protein stability in the solvent-protein space is responsible of the correct protein functioning. Then mutations that are found disease related during DNA analysis are often assumed to perturb protein stability as well. However so far no extensive analysis at the proteome level has investigated whether this is the case. Also computationally methods have been developed to infer whether a mutation is disease related and independently whether it affects protein stability. Therefore whether the perturbation of protein stability is related to what it is routinely referred to as a disease is still a big question mark. In this work we have tried for the first time to explore the relation among mutations at the protein level and their relevance to diseases with a large-scale computational study of the data from different databases. To this aim in the first part of the thesis for each mutation type we have derived two probabilistic indices (for 141 out of 150 possible SNPs): the perturbing index (Pp), which indicates the probability that a given mutation effects protein stability considering all the “in vitro” thermodynamic data available and the disease index (Pd), which indicates the probability of a mutation to be disease related, given all the mutations that have been clinically associated so far. We find with a robust statistics that the two indexes correlate with the exception of all the mutations that are somatic cancer related. By this each mutation of the 150 can be coded by two values that allow a direct comparison with data base information. Furthermore we also implement computational methods that starting from the protein structure is suited to predict the effect of a mutation on protein stability and find that overpasses a set of other predictors performing the same task. The predictor is based on support vector machines and takes as input protein tertiary structures. We show that the predicted data well correlate with the data from the databases. All our efforts therefore add to the SNP annotation process and more importantly found the relationship among protein stability perturbation and the human variome leading to the diseasome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General aim of the study is equine welfare, particularly concerning different husbandry methodic and inter-specific relational factors. Specific aim is the evaluation of possible mutual (to humans and to equines) benefits and the analysis of critical factors/strength points, of human-horse relationship within Therapeutic Riding context (TR). The peculiarities of human-horse relationship (compared to the bond with “Pet”) are analyzed, concerning their socio-anthropological, psychological, psycho-dynamic distinctive characteristics. 8 European representative therapeutic riding centers (TRC) were therefore selected (on the basis of their different animals’ husbandry criteria, and of the different rehabilitative methodologies adopted). TRC were investigated through 2 different questionnaires, specifically settled to access objective/subjective animal welfare parameters; the quality of human-horse relationship; technicians’ emotional experienced. 3 Centers were further selected, and behavioral (145 hours of behavioral recording) and physiological parameters (heart rate and heart rate variability) were evaluated, aimed to access equine welfare and horses’ adaptive responses/coping (towards general environment and towards TR job). Moreover a specific “handling-task” was ideated and experimented, aimed to measure the quality of TR technicians-horses relationship. We did therefore evaluate both the individual horses’ responses and the possible differences among Centers. Data collected highlight the lack of univocal standardized methodic, concerning the general animals’ management and the specific methodologies (aimed to improve animal welfare and to empower TR efficacy). Some positive and some critical aspects were detected concerning TR personnel-horse relationship. Another experimental approach did evaluate the efficacy (concerning the mutual benefits’ empowerment) of an “ethologically-fitted” TR intervention, aimed to educate children to and through the relationship with horses. Our data evidenced that the improvement of human horse relationship, through structured educational programs for TR personnel might have important consequences both to human and equine welfare.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oncolytic virotherapy exploits the ability of viruses to infect and kill cells. It is suitable as treatment for tumors that are not accessible by surgery and/or respond poorly to the current therapeutic approach. HSV is a promising oncolytic agent. It has a large genome size able to accommodate large transgenes and some attenuated oncolytic HSVs (oHSV) are already in clinical trials phase I and II. The aim of this thesis was the generation of HSV-1 retargeted to tumor-specific receptors and detargeted from HSV natural receptors, HVEM and Nectin-1. The retargeting was achieved by inserting a specific single chain antibody (scFv) for the tumor receptor selected inside the HSV glycoprotein gD. In this research three tumor receptors were considered: epidermal growth factor receptor 2 (HER2) overexpressed in 25-30% of breast and ovarian cancers and gliomas, prostate specific membrane antigen (PSMA) expressed in prostate carcinomas and in neovascolature of solid tumors; and epidermal growth factor receptor variant III (EGFRvIII). In vivo studies on HER2 retargeted viruses R-LM113 and R-LM249 have demonstrated their high safety profile. For R-LM249 the antitumor efficacy has been highlighted by target-specific inhibition of the growth of human tumors in models of HER2-positive breast and ovarian cancer in nude mice. In a murine model of HER2-positive glioma in nude mice, R-LM113 was able to significantly increase the survival time of treated mice compared to control. Up to now, PSMA and EGFRvIII viruses (R-LM593 and R-LM613) are only characterized in vitro, confirming the specific retargeting to selected targets. This strategy has proved to be generally applicable to a broad spectrum of receptors for which a single chain antibody is available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neisseria meningitidis (Nm) is the major cause of septicemia and meningococcal meningitis. During the course of infection, it must adapt to different host environments as a crucial factor for survival. Despite the severity of meningococcal sepsis, little is known about how Nm adapts to permit survival and growth in human blood. A previous time-course transcriptome analysis, using an ex vivo model of human whole blood infection, showed that Nm alters the expression of nearly 30% of ORFs of the genome: major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. Starting from these data, mutagenesis studies of a subset of up-regulated genes were performed and the mutants were tested for the ability to survive in human whole blood; Nm mutant strains lacking the genes encoding NMB1483, NalP, Mip, NspA, Fur, TbpB, and LctP were sensitive to killing by human blood. Then, the analysis was extended to the whole Nm transcriptome in human blood, using a customized 60-mer oligonucleotide tiling microarray. The application of specifically developed software combined with this new tiling array allowed the identification of different types of regulated transcripts: small intergenic RNAs, antisense RNAs, 5’ and 3’ untranslated regions and operons. The expression of these RNA molecules was confirmed by 5’-3’RACE protocol and specific RT-PCR. Here we describe the complete transcriptome of Nm during incubation in human blood; we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. In addition the tiling array analysis demonstrated that Nm expresses a set of new transcripts, not previously identified, and suggests the presence of a circuit of regulatory RNA elements used by Nm to adapt to proliferate in human blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Notch signalling is a cellular pathway that results conserved from Drosophila to Homo sapiens controlling a wide range of cellular processes in development and in differentiated organs. It induces cell proliferation or differentiation, increased survival or apoptosis, and it is involved in stemness maintainance. These functions are conserved, but exerted with a high tissue and cellular context specificity. Signalling activation determs nuclear translocation of the receptor’s cytoplasmic domain and activation of target genes transcription. As many developmental pathway, Notch deregulation is involved in cancer, leading to oncogenic or tumour suppressive role depending on the functions exerted in normal tissue. Notch1 and Notch3 resulted aberrantly expressed in human hepatocellular carcinoma (HCC) that is the more frequent tumour of the liver and the sixth most common tumour worldwide. This thesis has the aim to investigate the role of the signalling in HCC, with particular attention to dissect common and uncommon regulatory pathways between Notch1 and Notch3 and to define the role of the signalling in HCC. Nocth1 and Notch3 were analysed on their regulation on Hes1 target and involvement in cell cycle control. They showed to regulate CDKN1C/p57kip2 expression through Hes1 target. CDKN1C/p57kip2 induces not only cell cycle arrest, but also senescence in HCC cell lines. Moreover, the involvement of Notch1 in cancer progression and epithelial to mesenchymal transition was investigated. Notch1 showed to induce invasion of HCC, regulating EMT and E- Cadherin expression. Moreover, Notch3 showed specific regulation on p53 at post translational levels. In vitro and ex vivo analysis on HCC samples suggests a complex role of both receptors in regulate HCC, with an oncogenic role but also showing tumour suppressive effects, suggesting a complex and deep involvement of this signalling in HCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ingestion of a meal evokes a series of digestive processes, which consist of the essential functions of the digestive system: food transport, secretory activity, absorption of nutrients and the expulsion of undigested residues do not absorbed. The gastrointestinal chemosensitivity is characterized by cellular elements of the endocrine gastrointestinal mucosa and nerve fibers, in particular of vagal nature. A wide range of mediators endocrine and/or paracrine can be released from various endocrine cells in response to nutrients in the diet. These hormones, in addition to their direct activity, act through specific receptors activating some of the most important functions in the control of energy intake and energy homeostasis in the body. For integration of this complex system of control of gastrointestinal chemosensitivity, recent evidence demonstrates the presence of taste receptors (TR) belonging to the family of G proteins coupled receptor expressed in the mucosa of the gastrointestinal tract of different mammals and human. This thesis is divided into several research projects that have been conceived in order to clarify the relationship between TR and nutrients. To define this relationship I have used various scientific approaches, which have gone on to evaluate changes in signal molecules of TR, in particular of the α-transducin in the fasting state and after refeeding with standard diet in the gastrointestinal tract of the pig, the mapping of the same molecule signal in the gastrointestinal tract of fish (Dicentrarchus labrax), the signaling pathway of bitter TR in the STC-1 endocrine cell line and finally the involvement of bitter TR in particular of T2R38 in patients with an excessive caloric intake. The results showed how there is a close correlation between nutrients, TR and hormonal release and how they are useful both in taste perception but also likely to be involved in chronic diseases such as obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We usually perform actions in a dynamic environment and changes in the location of a target for an upcoming action require both covert shifts of attention and motor planning update. In this study we tested whether, similarly to oculomotor areas that provide signals for overt and covert attention shifts, covert attention shifts modulate activity in cortical area V6A, which provides a bridge between visual signals and arm-motor control. We performed single cell recordings in monkeys trained to fixate straight-ahead while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention demonstrating that visual, motor, and attentional responses can occur in combination in single neurons of V6A. This modulation in an area primarily involved in visuo-motor transformation for reaching suggests that also reach-related regions could directly contribute in the shifts of spatial attention necessary to plan and control goal-directed arm movements. Moreover, to test whether V6A is causally involved in these processes, we have performed a human study using on-line repetitive transcranial magnetic stimulation over the putative human V6A (pV6A) during an attention and a reaching task requiring covert shifts of attention and reaching movements towards cued targets in space. We demonstrate that the pV6A is causally involved in attention reorienting to target detection and that this process interferes with the execution of reaching movements towards unattended targets. The current findings suggest the direct involvement of the action-related dorso-medial visual stream in attentional processes, and a more specific role of V6A in attention reorienting. Therefore, we propose that attention signals are used by the V6A to rapidly update the current motor plan or the ongoing action when a behaviorally relevant object unexpectedly appears at an unattended location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aging is a complex phenomenon that affects organs and tissues at a different rate. With advancing age, the skeletal muscle undergoes a progressive loss of mass and strength, a process known as sarcopenia that leads to a decreased mobility and increased risk of falls and invalidity. On the other side, another organ such as the liver that is endowed with a peculiar regenerative capacity seems to be only marginally affected by aging. Accordingly, clinical data indicate that liver transplantation from aged subjects has, in specific conditions, function and duration comparable to those achievable with grafts of liver from young donors. The molecular mechanisms involved in these peculiar aging patterns are still largely unknown, but it is conceivable that protein degradation machineries might play an important role, as they are responsible for the maintenance of cellular homeostasis. Indeed, it has been suggested that alteration of proteostasis may contribute to the onset and progression of several age-related pathological conditions, including skeletal muscle wasting and sarcopenia, as well as to the aging phenotypes. The ubiquitin-proteasome system (UPS) is one of the most important cellular pathways for intracellular degradation of short-lived as well as damaged proteins. To date, studies on the age-related modifications of proteasomes in liver and skeletal muscle were performed prevalently in rodents, with controversial results, while only preliminary observations have been obtained in human liver and skeletal muscle. In this scenario, we want to investigate and characterize in humans the age-related modifications of proteasomes of these two different organs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co-evolving with the human host, gut microbiota establishes configurations, which vary under the pressure of inflammation, disease, ageing, diet and lifestyle. In order to describe the multi-stability of the microbiome-host relationship, we studied specific tracts of the bacterial trajectory during the human lifespan and we characterized peculiar deviations from the hypothetical development, caused by disease, using molecular techniques, such as phylogenetic microarray and next-generation sequencing. Firstly, we characterized the enterocyte-associated microbiota in breast-fed infants and adults, describing remarkable differences between the two groups of subjects. Successively, we investigated the impact of atopy on the development of the microbiome in Italian childrens, highlithing conspicuous deviations from the child-type microbiota of the Italian controls. To explore variation in the gut microbiota depending on geographical origins, which reflect different lifestyles, we compared the phylogenetic diversity of the intestinal microbiota of the Hadza hunter-gatherers of Tanzania and Italian adults. Additionally, we characterized the aged-type microbiome, describing the changes occurred in the metabolic potential of the gut microbiota of centenarians with respect to younger individuals, as a part of the pathophysiolology of the ageing process. Finally, we evaluated the impact of a probiotics intervention on the intestinal microbiota of elderly people, showing the repair of some age-related dysbioses. These studies contribute to elucidate several aspects of the intestinal microbiome development during the human lifespan, depicting the microbiota as an extremely plastic entity, capable of being reconfigured in response to different environmental factors and/or stressors of endogenous origin.