2 resultados para Human vision
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Industrial robots are both versatile and high performant, enabling the flexible automation typical of the modern Smart Factories. For safety reasons, however, they must be relegated inside closed fences and/or virtual safety barriers, to keep them strictly separated from human operators. This can be a limitation in some scenarios in which it is useful to combine the human cognitive skill with the accuracy and repeatability of a robot, or simply to allow a safe coexistence in a shared workspace. Collaborative robots (cobots), on the other hand, are intrinsically limited in speed and power in order to share workspace and tasks with human operators, and feature the very intuitive hand guiding programming method. Cobots, however, cannot compete with industrial robots in terms of performance, and are thus useful only in a limited niche, where they can actually bring an improvement in productivity and/or in the quality of the work thanks to their synergy with human operators. The limitations of both the pure industrial and the collaborative paradigms can be overcome by combining industrial robots with artificial vision. In particular, vision can be exploited for a real-time adjustment of the pre-programmed task-based robot trajectory, by means of the visual tracking of dynamic obstacles (e.g. human operators). This strategy allows the robot to modify its motion only when necessary, thus maintain a high level of productivity but at the same time increasing its versatility. Other than that, vision offers the possibility of more intuitive programming paradigms for the industrial robots as well, such as the programming by demonstration paradigm. These possibilities offered by artificial vision enable, as a matter of fact, an efficacious and promising way of achieving human-robot collaboration, which has the advantage of overcoming the limitations of both the previous paradigms yet keeping their strengths.
Resumo:
The present work takes into account three posterior parietal areas, V6, V6A, and PEc, all operating on different subsets of signals (visual, somatic, motor). The work focuses on the study of their functional properties, to better understand their respective contribution in the neuronal circuits that make possible the interactions between subject and external environment. In the caudalmost pole of parietal lobe there is area V6. Functional data suggest that this area is related to the encoding of both objects motion and ego-motion. However, the sensitivity of V6 neurons to optic flow stimulations has been tested only in human fMRI experiments. Here we addressed this issue by applying on monkey the same experimental protocol used in human studies. The visual stimulation obtained with the Flow Fields stimulus was the most effective and powerful to activate area V6 in monkey, further strengthening this homology between the two primates. The neighboring areas, V6A and PEc, show different cytoarchitecture and connectivity profiles, but are both involved in the control of reaches. We studied the sensory responses present in these areas, and directly compared these.. We also studied the motor related discharges of PEc neurons during reaching movements in 3D space comparing also the direction and depth tuning of PEc cells with those of V6A. The results show that area PEc and V6A share several functional properties. Area PEc, unlike V6A, contains a richer and more complex somatosensory input, and a poorer, although complex visual one. Differences emerged also comparing the motor-related properties for reaches in depth: the incidence of depth modulations in PEc and the temporal pattern of modulation for depth and direction allow to delineate a trend among the two parietal visuomotor areas.