3 resultados para Human Plasma
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Drug abuse is a major global problem which has a strong impact not only on the single individual but also on the entire society. Among the different strategies that can be used to address this issue an important role is played by identification of abusers and proper medical treatment. This kind of therapy should be carefully monitored in order to discourage improper use of the medication and to tailor the dose according to the specific needs of the patient. Hence, reliable analytical methods are needed to reveal drug intake and to support physicians in the pharmacological management of drug dependence. In the present Ph.D. thesis original analytical methods for the determination of drugs with a potential for abuse and of substances used in the pharmacological treatment of drug addiction are presented. In particular, the work has been focused on the analysis of ketamine, naloxone and long-acting opioids (buprenorphine and methadone), oxycodone, disulfiram and bupropion in human plasma and in dried blood spots. The developed methods are based on the use of high performance liquid chromatography (HPLC) coupled to various kinds of detectors (mass spectrometer, coulometric detector, diode array detector). For biological sample pre-treatment different techniques have been exploited, namely solid phase extraction and microextraction by packed sorbent. All the presented methods have been validated according to official guidelines with good results and some of these have been successfully applied to the therapeutic drug monitoring of patients under treatment for drug abuse.
Resumo:
This thesis work aims to develop original analytical methods for the determination of drugs with a potential for abuse, for the analysis of substances used in the pharmacological treatment of drug addiction in biological samples and for the monitoring of potentially toxic compounds added to street drugs. In fact reliable analytical techniques can play an important role in this setting. They can be employed to reveal drug intake, allowing the identification of drug users and to assess drug blood levels, assisting physicians in the management of the treatment. Pharmacological therapy needs to be carefully monitored indeed in order to optimize the dose scheduling according to the specific needs of the patient and to discourage improper use of the medication. In particular, different methods have been developed for the detection of gamma-hydroxybutiric acid (GHB), prescribed for the treatment of alcohol addiction, of glucocorticoids, one of the most abused pharmaceutical class to enhance sport performance and of adulterants, pharmacologically active compounds added to illicit drugs for recreational purposes. All the presented methods are based on capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) coupled to various detectors (diode array detector, mass spectrometer). Biological samples pre-treatment was carried out using different extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE). Different matrices have been considered: human plasma, dried blood spots, human urine, simulated street drugs. These developed analytical methods are individually described and discussed in this thesis work.
Resumo:
Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disorder and according to the WHO it is estimated that 36 millions of people worldwide currently suffer from AD. Genetic and environmental factors interact in a complex interplay that might affect pathogenic mechanisms leading to age-related neurodegeneration. The hypothesis is that the presence of allelic polymorphisms in selected genes affecting individual brain susceptibility to infection by the herpes virus family during aging, may contribute to neuronal loss, inflammation and amyloid deposition. Herpes virus family show features relevant to AD, since they infect a large proportion of human population, develop a latent form persisting for several years, are difficult to eliminate by immune responses especially when latency has been established and are able to infect neurons. The association between AD and herpes viruses infection has been investigated. In particular the investigation focused on CMV, EBV and HHV-6 in DNA samples from peripheral blood of a large cohort of patients with clinical diagnosis of AD and age matched CTR, from a longitudinal population study, and DNA samples from brain tissue of patients with neuropathological diagnosis of definitive AD. An association between the presence of EBV and HHV-6 DNA from PBL positivity with the cognitive deterioration and progression to AD has been focused. Moreover, IgG plasma levels in CTR and AD to these viruses were tested. CMV and EBV IgG plasma levels were higher in elderly subjects that developed clinical AD at the end of the five year follow up. Our findings support the notion that persistent cycles of latency and reactivation of herpes viruses may contribute to impair systemic immune response and induce altered inflammatory process that in turn affect cognitive decline during aging.