10 resultados para Human Epidermal Membrane
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Among the different types of breast cancer (BC), the estrogen receptor positive (ER+) subtype, which requires estrogens for its growth and proliferation, is the most common, while triple negative BC, characterized by the absence of ER, progesterone receptor and human epidermal growth factor receptor 2, often leads to poor prognosis. First-line therapies for the treatment of ER+ BC act either by suppressing estrogen production, through the inhibition of aromatase (AR) enzyme, or by blocking estrogen prooncogenic activity, via the modulation/degradation of ERs. The serious side effects and the intrinsic or acquired resistance phenomena that arise with prolonged use of these drugs limit their therapeutic application, stimulating the search for new strategies to face this disease. In this context, the development of dual acting aromatase inhibitors, able to target both the orthosteric and the recently identified allosteric pockets of AR could be an opportunity to fight ER+ BC. Another promising strategy could be the development of multitarget compounds, targeting both AR and ERs. In this scenario, here we designed and synthesized two series of new xanthones or more flexible benzophenones as potential dual acting aromatase inhibitors. Moreover, inspired from tamoxifen metabolites and a literature compound endowed with activity on both AR and ER, different structurally related series of potential multitarget compounds were developed. The biological results showed that some of the new molecules were promising candidates for further development. It was recently observed that the lately discovered histamine H4 receptor is expressed in human breast tissue, displaying a key role in biological processes mediated by histamine such as cell proliferation, senescence, and apoptosis in malignant cells, representing a potential target in triple negative BC. Thus, a broad series of methyl quinazoline sulfonamides, carrying different functional groups on the sulfonamide moiety, were designed and synthesized as potential H4 receptor ligands.
Resumo:
Despite the paramount advances in cancer research, breast cancer (BC) still ranks one of the leading causes of cancer-related death worldwide. Thanks to the screening campaign started in developed countries, BC is often diagnosed at early stages (non-metastatic BC, nmBC), but disease relapse occurrence even after decades and at distant sites is not an uncommon phenomenon. Conversely, metastatic BC (mBC) is considered an incurable disease. The major perpetrators of tumor spread to secondary organs are circulating tumor cells (CTCs), a rare population of cells detectable in the peripheral blood of oncologic patients. In this study, CTCs from patients diagnosed with luminal nmBC and mBC (hormone receptor positive, Human Epidermal Growth Factor Receptor 2 (HER2) negative) were characterized at both phenotypic and molecular levels. To better understand the molecular mechanisms underlying their biology and their metastatic potential, next-generation sequencing (NGS) analyses were performed at single-cell resolution to assess copy number aberrations (CNAs), single nucleotide variants (SNVs) and gene expression profiling. The findings of this study arise hints in CTC detection, and pave the way to new application in CTC research.
Resumo:
The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.
Resumo:
The aim of the present study is understanding the properties of a new group of redox proteins having in common a DOMON-type domain with characteristics of cytochromes b. The superfamily of proteins containing a DOMON of this type includes a few protein families. With the aim of better characterizing this new protein family, the present work addresses both a CyDOM protein (a cytochrome b561) and a protein only comprised of DOMON(AIR12), both of plant origin. Apoplastic ascorbate can be regenerated from monodehydroascorbate by a trans-plasma membrane redox system which uses cytosolic ascorbate as a reductant and comprises a high potential cytochrome b. We identified the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis auxin-responsive gene air12. The protein, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol-modification signal, and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a β-sandwich domain and belonging to the DOMON superfamily. It is shown to be a b-type cytochrome with a symmetrical α-band at 561 nm, to be fully reduced by ascorbate and fully oxidized by monodehydroascorbate. Redox potentiometry suggests that AIR12 binds two high-potential hemes (Em,7 +135 and +236 mV). Phylogenetic analyses reveal that the auxin-responsive genes AIR12 constitute a new family of plasma membrane b-type cytochromes specific to flowering plants. Although AIR12 is one of the few redox proteins of the PM characterized to date, the role of AIR12 in trans-PM electron transfer would imply interaction with other partners which are still to be identified. Another part of the present project was aimed at understanding of a soybean protein comprised of a DOMON fused with a well-defined b561 cytochrome domain (CyDOM). Various bioinformatic approaches show this protein to be composed of an N-terminal DOMON followed by b561 domain. The latter contains five transmembrane helices featuring highly conserved histidines, which might bind haem groups. The CyDOM has been cloned and expressed in the yeast Pichia pastoris, and spectroscopic analyses have been accomplished on solubilized yeast membranes. CyDOM clearly reveal the properties of b-type cytochrome. The results highlight the fact that CyDOM is clearly able to lead an electron flux through the plasmamembrane. Voltage clamp experiments demonstrate that Xenopus laevis oocytes transformed with CyDOM of soybean exhibit negative electrical currents in presence of an external electron acceptor. Analogous investigations were carried out with SDR2, a CyDOM of Drosophila melanogaster which shows an electron transport capacity even higher than plant CyDOM. As quoted above, these data reinforce those obtained in plant CyDOM on the one hand, and on the other hand allow to attribute to SDR2-like proteins the properties assigned to CyDOM. Was expressed in Regenerated tobacco roots, transiently transformed with infected a with chimeral construct GFP: CyDOM (by A. rhizogenes infection) reveals a plasmamembrane localization of CyDOM both in epidermal cells of the elongation zone of roots and in root hairs. In conclusion. Although the data presented here await to be expanded and in part clarified, it is safe to say they open a new perspective about the role of this group of proteins. The biological relevance of the functional and physiological implications of DOMON redox domains seems noteworthy, and it can but increase with future advances in research. Beyond the very finding, however interesting in itself, of DOMON domains as extracellular cytochromes, the present study testifies to the fact that cytochrome proteins containing DOMON domains of the type of “CyDOM” can transfer electrons through membranes and may represent the most important redox component of the plasmamembrane as yet discovered.
Resumo:
This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.
Resumo:
Oncolytic virotherapy exploits the ability of viruses to infect and kill cells. It is suitable as treatment for tumors that are not accessible by surgery and/or respond poorly to the current therapeutic approach. HSV is a promising oncolytic agent. It has a large genome size able to accommodate large transgenes and some attenuated oncolytic HSVs (oHSV) are already in clinical trials phase I and II. The aim of this thesis was the generation of HSV-1 retargeted to tumor-specific receptors and detargeted from HSV natural receptors, HVEM and Nectin-1. The retargeting was achieved by inserting a specific single chain antibody (scFv) for the tumor receptor selected inside the HSV glycoprotein gD. In this research three tumor receptors were considered: epidermal growth factor receptor 2 (HER2) overexpressed in 25-30% of breast and ovarian cancers and gliomas, prostate specific membrane antigen (PSMA) expressed in prostate carcinomas and in neovascolature of solid tumors; and epidermal growth factor receptor variant III (EGFRvIII). In vivo studies on HER2 retargeted viruses R-LM113 and R-LM249 have demonstrated their high safety profile. For R-LM249 the antitumor efficacy has been highlighted by target-specific inhibition of the growth of human tumors in models of HER2-positive breast and ovarian cancer in nude mice. In a murine model of HER2-positive glioma in nude mice, R-LM113 was able to significantly increase the survival time of treated mice compared to control. Up to now, PSMA and EGFRvIII viruses (R-LM593 and R-LM613) are only characterized in vitro, confirming the specific retargeting to selected targets. This strategy has proved to be generally applicable to a broad spectrum of receptors for which a single chain antibody is available.
Resumo:
La ricerca sulle cellule staminali apre nuove prospettive per approcci di terapia cellulare. Molta attenzione è concentrata sulle cellule staminali isolate da membrane fetali, per la facilità di recupero del materiale di partenza, le limitate implicazioni etiche e le caratteristiche delle popolazioni di cellule staminali residenti. In particolare a livello dell’epitelio amniotico si concentra una popolazione di cellule (hAECs) con interessanti caratteristiche di staminalità, pluripotenza e immunomodulazione. Restano però una serie di limiti prima di arrivare ad un’applicazione clinica: l’uso di siero di origine animale nei terreni di coltura e le limitate conoscenze legate alla reazione immunitaria in vivo. La prima parte di questo lavoro è focalizzata sulle caratteristiche delle hAECs coltivate in un terreno privo di siero, in confronto a un terreno di coltura classico. Lo studio è concentrato sull’analisi delle caratteristiche biologiche, immunomodulatorie e differenziative delle hAECs. L’interesse verso le caratteristiche immunomodulatorie è legato alla possibilità che l’uso di un terreno serum free riduca il rischio di rigetto dopo trapianto in vivo. La maggior parte degli studi in vivo con cellule isolate da membrane fetali sono stati realizzati con cellule di derivazione umana in trapianti xenogenici, ma poco si sa circa la sopravvivenza di queste cellule in trapianti allogenici, come nel caso di trapianti di cellule di derivazione murina in modelli di topo. La seconda parte dello studio è focalizzata sulla caratterizzazione delle cellule derivate da membrane fetali di topo (mFMSC). Le caratteristiche biologiche, differenziative e immunomodulatorie in vitro e in vivo delle mFMSC sono state confrontate con i fibroblasti embrionali di topo. In particolare è stata analizzata la risposta immunitaria a trapianti di mFMSC nel sistema nervoso centrale (CNS) in modelli murini immunocompetenti.
Resumo:
Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.
Resumo:
Alcune patologie dell’occhio come la retinopatia diabetica, il pucker maculare, il distacco della retina possono essere curate con un intervento di vitrectomia. I rischi associati all’intervento potrebbero essere superati ricorrendo alla vitrectomia enzimatica con plasmina in associazione o in sostituzione della vitrectomia convenzionale. Inoltre, l’uso di plasmina autologa eviterebbe problemi di rigetto. La plasmina si ottiene attivando il plasminogeno con enzimi quali l’attivatore tissutale (tPA) e l’urochinasi ( uPA ) . La purificazione del plasminogeno dal sangue avviene normalmente attraverso cromatografia di affinità con resina. Tuttavia, le membrane di affinità costituiscono un supporto ideale per questa applicazione poiché possono essere facilmente impaccate prima dell’intervento, permettendo la realizzazione di un dispositivo monouso che fornisce un processo rapido ed economico. Obiettivo di questo lavoro è la preparazione di membrane di affinità per la purificazione del plasminogeno utilizzando L-lisina come ligando di affinità. Per questo scopo sono state usate membrane in cellulosa rigenerata ad attivazione epossidica, modificate con due diversi protocolli per l’immobilizzazione di L-lisina. La densità ligando è stata misurata mediante un saggio colorimetrico che usa l’acido arancio 7 come indicatore. La resa di immobilizzazione è stata studiata in funzione del tempo di reazione e della concentrazione di L-lisina. Le membrane ottimizzate sono state caratterizzate con esperimenti dinamici usando siero bovino e umano, i risultati sono stati confrontati con quelli ottenuti in esperimenti paralleli condotti con una resina commerciale di affinità con L-lisina. Durante gli esperimenti con siero, le frazioni provenienti da ogni fase cromatografica sono state raccolte e analizzate con HPLC ed elettroforesi SDS-PAGE. In particolare, l’elettroforesi dei campioni eluiti presenta una banda del plasminogeno ben definita indicando che le membrane di affinità con L-lisina sono adatte alla purificazione del plasminogeno. Inoltre, è emerso che le membrane hanno maggiore produttività della resina commerciale di riferimento.
Resumo:
Neisseria meningitidis is a gram negative human obligated pathogen, mostly found as a commensal in the oropharyngeal mucosa of healthy individuals. It can invade this epithelium determining rare but devastating and fast progressing outcomes, such as meningococcal meningitidis and septicemia, leading to death (about 135000 per year worldwide). Conjugated vaccines for serogroups A, C, W135, X and Y were developed, while for N. meningitidis serogroup B (MenB) the vaccines were based on Outern Membrane Vesicles (OMV). One of them is the 4C-MenB (Bexsero). The antigens included in this vaccine’s formulation are, in addition to the OMV from New Zeland epidemic strain 98/254, three recombinant proteins: NadA, NHBA and fHbp. While the role of these recombinant components was deeply characterized, the vesicular contribution in 4C-MenB elicited protection is mediated mainly by porin A and other unidentified antigens. To unravel the relative contribution of these different antigens in eliciting protective antibody responses, we isolated human monoclonal antibodies (mAbs) from single-cell sorted plasmablasts of 3 adult vaccinees peripheral blood. mAbs have been screened for binding to 4C-MenB components by Luminex bead-based assay. OMV-specific mAbs were purified and tested for functionality by serum bactericidal assay (SBA) on 18 different MenB strains and characterized in a protein microarray containing a panel of prioritized meningococcal proteins. The bactericidal mAbs identified to recognize the outer membrane proteins PorA and PorB, stating the importance of PorB in cross-strain protection. In addition, RmpM, BamE, Hyp1065 and ComL were found as immunogenic components of the 4C-MenB vaccine.